2,553 research outputs found

    Molecular Studies of Subfamily Gilliesioideae (Alliaceae)

    Get PDF
    We present an analysis of relationships in Gilliesioideae (Alliaceae) based on a combined matrix of plastid rbcL, the trnL intron, the trnL-F intergenic spacer, and the rps16 intron and nuclear ITS ribosomal DNA sequences. The results are generally congruent with previous analyses, indicating two well-supported groups: Ipheion plus allied genera ( lpheieae ined.) and Gilliesieae. They also provide higher bootstrap support for many patterns of relationships. Polyphyly of lpheion and Nothoscordum is confirmed. Increased taxon sampling (particularly in Gilliesieae) and additional molecular data would be desirable to provide further resolution and to allow an appropriate taxonomic revision to be made

    A Molecular Phylogenetic Study of Generic and Subgeneric Relationships in the Southwest Australian Endemics Conostylis and Blancoa (Haemodoraceae)

    Get PDF
    We sequenced the plastid gene matK and the nuclear ribosomal spacer ITS for 39 of the 47+ species of Conostylis as well as its monotypic sister genus Blancoa, which some authors have included within Conostylis. Conostylis received 99% bootstrap support as monophyletic, with 100% support that Blancoa is its sister. Within Conostylis, the study provides strong support for two large sister clades, which we refer to as clades A (100%) and B (99%). Clade A consists of C. subgen. Conostylis plus the recently discovered C. glabra of C. subgen. Pendula sect. Divaricata (100%), and C. subgen. Pendula sect. Appendicula (100%). Clade B consists of species mostly placed within the remainder of C. subgen. Pendula but also contains members of the other small subgenera. Subgenus Pendula can be recircumscribed as monophyletic by excluding sect. Appendicula, Conostylis phathyrantha, and C. glabra and including subgen. Androstemma and subgen. Greenia. The status of the other two minor subgenera—C. subgen. Brachycaulon and C. subgen. Bicolorata—requires further investigation. Conostylis sect. Divaricata is polyphyletic. Ancient vicariance events are postulated for Conostylis involving separation of major clades in the northern and southern kwongan regions of southwestern Australia. The phylogenetic pattern in Conostylis is consistent across several lineages with the prolonged persistence of relictual taxa combined with explosive more recent speciation, the latter pronounced in the northern kwongan. There is evidence of significant divergence in major speciation mechanisms and chromosome number change among the three most species-rich subgenera/sections (dysploidy in Pendula and Appendicula vs. diploid speciation in Conostylis). Further investigation is needed to evaluate these ideas and elucidate the patterns of speciation in this most diverse genus of Haemodoraceae

    Movement of palladium nanoparticles in hollow graphitised nanofibres: the role of migration and coalescence in nanocatalyst sintering during the Suzuki–Miyaura reaction

    Get PDF
    The evolution of individual palladium nanoparticle (PdNP) catalysts, in graphitised nanofibres (GNF), in the liquid-phase Suzuki-Miyaura (SM) reaction has been appraised. The combination of identical location-transmission electron microscopy (IL-TEM) and a nano test tube approach allowed spatiotemporal continuity of observations at single nanopartcile level, revealing that migration and coalescence is the most significant pathway to coarsening of the nanocatalyst, rather than Ostwald ripening. IL-TEM gave unprecedented levels of detail regarding the movement of PdNP on carbon surfaces at the nanoscale, including size-dependent migration and directional movement, opening horizons for optimisation of future catalysts through surface morphology design

    Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications

    Get PDF
    Phylogenetic relationships within Limonium (Plumbaginaceae) are evaluated using sequence data from three plastid regions (rbcL, the trnL intron, and the trnL-trnF intergenic spacer). Sixty-six species representing the major genera of Staticoideae, including representatives of all sections and genera formerly included in Limonium, have been analyzed using four species of Plumbaginoideae as an outgroup. Analyses of each separate and combined data set yield similar results. Afrolimon is embedded in Limonium and related to L. vulgare, the type of Limonium. Limonium is split into two major clades corresponding to subgenera, but otherwise the current infrageneric classification proved to be artificial. Some groups restricted to particular areas can be recognized, and their synapomorphies are discussed. The presence of an isolated taxon in the Canary Islands is used as a calibration point for age estimates of the major events in the genus, including migrations to the Southern Hemisphere, the Canary Islands, and Asia. The rapid radiation of Limonium in the Mediterranean basin appears to coincide with the desiccation of the Mediterranean Sea in the Messinian (late Miocene).Funding for this project was provided by the Royal Botanic Gardens, Kew, and Consellería de Educación y Ciencia (Comunidad Valenciana, Spain)

    Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors

    Get PDF
    The use of single-walled carbon nanotubes as effective nanoreactors for preparative bimolecular reactions has been demonstrated for the first time. We show that the extreme spatial confinement of guest reactant molecules inside host carbon nanotubes increases the regioselectivity for 1,4-triazole in thermally initiated azide–alkyne cycloaddition reactions. Through comparison of the internal dimensions of the nanotube and the steric bulk of the reactants, we demonstrate that the formation of the more linear 1,4-regioisomer can be enhanced by up to 55% depending on the extent of spatial restrictions imposed within the nanoreactors. Furthermore, through systematic variation of the substituents in the para-position of the alkyne reactants, we reveal the unexpected influence of the reactants’ electronic properties on the regioselectivity of reactions within nanoreactors, which act to either oppose or promote the preferential formation of the 1,4-regioisomer induced by steric effects, reflecting the unique ability of carbon nanotubes to stabilize the dipole moment of confined reactants. Thus, we show that the observed regioselectivity of azide–alkyne cycloaddition reactions confined within carbon nanotube nanoreactors reflects a subtle interplay between both steric and electronic factors

    Synthesis of hydroxylated group IV metal oxides inside hollow graphitised carbon nanofibers: nano-sponges and nanoreactors for enhanced decontamination of organophosphates

    Get PDF
    The confinement and enhanced catalytic properties of hydroxylated group IV metal oxide nanostructures inside hollow graphitised carbon nanofibers (GNF) has been demonstrated. GNF – a structural analogue of carbon nanotubes – were effectively filled with suitable precursor molecules of metal chlorides from the gas and liquid phases. Subsequent basecatalysed hydrolysis afforded amorphous, nanostructured hydroxylated metal oxide (MOx(OH)y where M = Zr, Ti, and Hf) thin films, which coat the internal surfaces of GNF. This versatile and general strategy allows the chemical composition and morphology of the encapsulated material to be modified by varying the conditions used for hydrolysis and post-synthesis thermal treatment. The increased Lewis acidic properties and high surface area of the zirconium composite promote the catalysed hydrolysis of dimethyl nitrophenyl phosphate (DMNP) – a toxic organophosphorus chemical. A four-fold enhancement in the rate of DMNP hydrolysis relative to its separate constituent components was observed, highlighting the surprising synergistic abilities of this composite material to perform both as a ‘nano-sponge’, absorbing the harmful compounds inside the GNF, and a nanoreactor, enhancing the local concentration of organophosphate around the hydroxylated metal oxide species, leading to improved catalytic performance

    Quantifying soot nanostructures: Importance of image processing parameters for lattice fringe analysis

    Get PDF
    Fringe analysis is a commonly used method to quantify soot nanostructures. However, the settings of the involved filters and their impact on the results are rarely addressed. In this study, the influence of the three filter parameters as well as two aspects of the image acquisition was assessed experimentally. For the analysis, a carbon black as well as one diesel engine and one gasoline direct injection (GDI) engine soot sample were used. Gaussian low-pass filter standard deviations larger 1.5 yielded only minor differences in fringe metrics. Standard deviations between 2.0 and 3.0 enabled realistic representation of fringes. A linear correlation was found between the white top-hat transformation disk size and all fringe analysis metrics. For realistic nanostructure representation, disk sizes of 5 px and 7 px are most suitable. Threshold values as calculated by Otsu's method generally yielded the best nanostructure representation. Any deviation distorted the extracted fringes and noticeably reduced their total number. Thus, consistent use of Otsu thresholds without alterations is advised. Deviating from the neutral electron microscope focus point by under- and over-focusing resulted in distinctive drops in both fringe lengths and Otsu thresholds. Consistent focusing with the help of fast Fourier transformations of the respective particles is vital for reliable results. The effect of reduced noise levels by repeated averaged images was found to be minor beyond the model of the camera used. The region of interest size correlated linearly with the number of extracted fringes, however, it did not affect the fringe metrics. For statistically reliable analysis, a minimum of 4000 fringes is suggested. The GDI sample exhibited the shortest fringes and the highest tortuosity. For diesel soot and carbon black, similar fringe lengths could be observed. The highest tortuosity was found for GDI soot, followed by diesel soot and carbon black

    An inland sea high nitrate-low chlorophyll (HNLC) region with naturally high pCO2

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 60 (2015): 957–966, doi:10.1002/lno.10062.We present a time series of data for temperature, salinity, nitrate, and carbonate chemistry from September 2011 to July 2013 at the University of Washington's Friday Harbor Laboratories. Samples were collected at the Friday Harbor dock and pump house. Seawater conditions at Friday Harbor were high nitrate-low chlorophyll, with average nitrate and pCO2 concentrations of ∼ 25 ± 5 μmol L−1 and ∼ 700 ± 103 μatm (pH 7.80 ± 0.06). Transient decreases in surface water nitrate and pCO2 corresponded with the timing of a spring bloom (April through June). The high nitrate and pCO2 originate from the high values for these parameters in the source waters to the Salish Sea from the California Undercurrent (CU). These properties are due to natural aerobic respiration in the region where the CU originates, which is the oxygen minimum zone in the eastern tropical North Pacific. Alkalinity varies little so the increase in pCO2 is due to inputs of dissolved inorganic carbon (DIC). This increase in DIC can come from both natural aerobic respiration within the ocean and input of anthropogenic CO2 from the atmosphere when the water was last at the sea surface. We calculated that the anthropogenic “ocean acidification” contribution to DIC in the source waters of the CU was 36 μmol L−1. This contribution ranged from 13% to 22% of the total increase in DIC, depending on which stoichiometry was used for C/O2 ratio (Redfield vs. Hedges). The remaining increase in DIC was due to natural aerobic respiration.We thank The Educational Foundation of America (EFA) and National Science Foundation Field Station Marine Lab Program (FSML) (NSF DBI 0829486) for essential initial funding to JWM to develop the Ocean Acidification Experimental Lab (OAEL). Additional support was provided by NSF award EF1041213 to E. Carrington Ken Sebens for encouragement to involve students in this research as part of a FHL mini-apprenticeship course
    corecore