88 research outputs found

    Passive water control at the surface of a superhydrophobic lichen

    Get PDF
    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were placed onto separate podetia of Cladonia chlorophaea and observed using optical microscopy and cryo-scanning-electron microscopy (cryo-SEM) techniques to determine the structure of podetia and to visualise their interaction with water droplets. SEM and optical microscopy studies revealed that the surface of the podetia was constructed in a three-level structural hierarchy. By cryo-SEM of water-glycerol droplets placed on the upper part of the podetium, pinning of the droplet to specific, hydrophilic spots (pycnidia/apothecia) was observed. The results suggest a mechanism for water uptake, which is highly sophisticated, using surface wettability to generate a passive response to different types of precipitation in a manner similar to the Namib Desert beetle. This mechanism is likely to be found in other organisms as it offers passive but selective water control

    The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping

    Get PDF
    In this work we present a reliable technique for the production of large areas of high aspect-ratio patterns and describe their use as model super-hydrophobic systems. The high thickness and straight sidewalls possible with SU-8 were used to generate dense patterns of small pillars. These photoresist patterns could be used directly, without the need for micromoulding. A method is given allowing resist thickness to be varied over a wide range and a bottom antireflective layer was used to simplify patterning on reflective substrates. This patterning technique allows rapid testing of wetting theories, as pattern size and depth can be varied simply and samples can be produced in sufficient numbers for laboratory use. We show how the static contact angle of water varies with pattern height for one sample-pattern and how static and dynamic contact angles vary with dimension using high aspect-ratio patterns

    Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football

    Full text link
    IMPORTANCE: Players of American football may be at increased risk of long-term neurological conditions, particularly chronic traumatic encephalopathy (CTE). OBJECTIVE: To determine the neuropathological and clinical features of deceased football players with CTE. DESIGN, SETTING, AND PARTICIPANTS: Case series of 202 football players whose brains were donated for research. Neuropathological evaluations and retrospective telephone clinical assessments (including head trauma history) with informants were performed blinded. Online questionnaires ascertained athletic and military history. EXPOSURES: Participation in American football at any level of play. MAIN OUTCOMES AND MEASURES: Neuropathological diagnoses of neurodegenerative diseases, including CTE, based on defined diagnostic criteria; CTE neuropathological severity (stages I to IV or dichotomized into mild [stages I and II] and severe [stages III and IV]); informant-reported athletic history and, for players who died in 2014 or later, clinical presentation, including behavior, mood, and cognitive symptoms and dementia. RESULTS: Among 202 deceased former football players (median age at death, 66 years [interquartile range, 47-76 years]), CTE was neuropathologically diagnosed in 177 players (87%; median age at death, 67 years [interquartile range, 52-77 years]; mean years of football participation, 15.1 [SD, 5.2]), including 0 of 2 pre–high school, 3 of 14 high school (21%), 48 of 53 college (91%), 9 of 14 semiprofessional (64%), 7 of 8 Canadian Football League (88%), and 110 of 111 National Football League (99%) players. Neuropathological severity of CTE was distributed across the highest level of play, with all 3 former high school players having mild pathology and the majority of former college (27 [56%]), semiprofessional (5 [56%]), and professional (101 [86%]) players having severe pathology. Among 27 participants with mild CTE pathology, 26 (96%) had behavioral or mood symptoms or both, 23 (85%) had cognitive symptoms, and 9 (33%) had signs of dementia. Among 84 participants with severe CTE pathology, 75 (89%) had behavioral or mood symptoms or both, 80 (95%) had cognitive symptoms, and 71 (85%) had signs of dementia. CONCLUSIONS AND RELEVANCE: In a convenience sample of deceased football players who donated their brains for research, a high proportion had neuropathological evidence of CTE, suggesting that CTE may be related to prior participation in football.This study received support from NINDS (grants U01 NS086659, R01 NS078337, R56 NS078337, U01 NS093334, and F32 NS096803), the National Institute on Aging (grants K23 AG046377, P30AG13846 and supplement 0572063345-5, R01 AG1649), the US Department of Defense (grant W81XWH-13-2-0064), the US Department of Veterans Affairs (I01 CX001038), the Veterans Affairs Biorepository (CSP 501), the Veterans Affairs Rehabilitation Research and Development Traumatic Brain Injury Center of Excellence (grant B6796-C), the Department of Defense Peer Reviewed Alzheimer’s Research Program (grant 13267017), the National Operating Committee on Standards for Athletic Equipment, the Alzheimer’s Association (grants NIRG-15-362697 and NIRG-305779), the Concussion Legacy Foundation, the Andlinger Family Foundation, the WWE, and the NFL

    Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    Get PDF
    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces

    A latent growth curve model to estimate electronic screen use patterns amongst adolescents aged 10 to 17 years

    Get PDF
    Background: High quality, longitudinal data describing young people's screen use across a number of distinct forms of screen activity is missing from the literature. This study tracked multiple screen use activities (passive screen use, gaming, social networking, web searching) amongst 10- to 17-year-old adolescents across 24 months. Methods: This study tracked the screen use of 1948 Australian students in Grade 5 (n = 636), Grade 7 (n = 672), and Grade 9 (n = 640) for 24 months. At approximately six-month intervals, students reported their total screen time as well as time spent on social networking, passive screen use, gaming, and web use. Patterns of screen use were determined using latent growth curve modelling. Results: In the Grades 7 and 9 cohorts, girls generally reported more screen use than boys (by approximately one hour a day), though all cohorts of boys reported more gaming. The different forms of screen use were remarkably stable, though specific cohorts showed change for certain forms of screen activity. Conclusion: These results highlight the diverse nature of adolescent screen use and emphasise the need to consider both grade and sex in future research and policy

    Special phase transformation and crystal growth pathways observed in nanoparticles†

    Get PDF
    Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO(2)) and zinc sulfide (ZnS) with thermodynamic analysis, kinetic modeling and molecular dynamics (MD) simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling

    Sustainable Urban Systems: Co-design and Framing for Transformation

    Get PDF
    Rapid urbanisation generates risks and opportunities for sustainable development. Urban policy and decision makers are challenged by the complexity of cities as social–ecological–technical systems. Consequently there is an increasing need for collaborative knowledge development that supports a whole-of-system view, and transformational change at multiple scales. Such holistic urban approaches are rare in practice. A co-design process involving researchers, practitioners and other stakeholders, has progressed such an approach in the Australian context, aiming to also contribute to international knowledge development and sharing. This process has generated three outputs: (1) a shared framework to support more systematic knowledge development and use, (2) identification of barriers that create a gap between stated urban goals and actual practice, and (3) identification of strategic focal areas to address this gap. Developing integrated strategies at broader urban scales is seen as the most pressing need. The knowledge framework adopts a systems perspective that incorporates the many urban trade-offs and synergies revealed by a systems view. Broader implications are drawn for policy and decision makers, for researchers and for a shared forward agenda

    Size Dependence of a Temperature-Induced Solid–Solid Phase Transition in Copper(I) Sulfide

    Get PDF
    Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics
    corecore