24 research outputs found

    Classification and monogamy of three-qubit biseparable Bell correlations

    Get PDF
    We strengthen the set of Bell-type inequalities presented by Sun & Fei [Phys. Rev. A 74, 032335 (2006)] that give a classification for biseparable correlations and entanglement in tripartite quantum systems. We will furthermore consider the restriction to local orthogonal spin observables and show that this strengthens all previously known such tripartite inequalities. The quadratic inequalities we find indicate a type of monogamy of maximal biseparable three-particle quantum correlations, although the nonmaximal ones can be shared. This is contrasted to recently found monogamy inequalities for bipartite Bell correlations in tripartite systems.Comment: Accepted final version for PRA. 6 page

    Partial separability and entanglement criteria for multiqubit quantum states

    Full text link
    We explore the subtle relationships between partial separability and entanglement of subsystems in multiqubit quantum states and give experimentally accessible conditions that distinguish between various classes and levels of partial separability in a hierarchical order. These conditions take the form of bounds on the correlations of locally orthogonal observables. Violations of such inequalities give strong sufficient criteria for various forms of partial inseparability and multiqubit entanglement. The strength of these criteria is illustrated by showing that they are stronger than several other well-known entanglement criteria (the fidelity criterion, violation of Mermin-type separability inequalities, the Laskowski-\.Zukowski criterion and the D\"ur-Cirac criterion), and also by showing their great noise robustness for a variety of multiqubit states, including N-qubit GHZ states and Dicke states. Furthermore, for N greater than or equal to 3 they can detect bound entangled states. For all these states, the required number of measurement settings for implementation of the entanglement criteria is shown to be only N+1. If one chooses the familiar Pauli matrices as single-qubit observables, the inequalities take the form of bounds on the anti-diagonal matrix elements of a state in terms of its diagonal matrix elements.Comment: 25 pages, 3 figures. v4: published versio

    The quantum world is not built up from correlations

    Get PDF
    It is known that the global state of a composite quantum system can be completely determined by specifying correlations between measurements performed on subsystems only. Despite the fact that the quantum correlations thus suffice to reconstruct the quantum state, we show, using a Bell inequality argument, that they cannot be regarded as objective local properties of the composite system in question. It is well known since the work of J.S. Bell, that one cannot have locally preexistent values for all physical quantities, whether they are deterministic or stochastic. The Bell inequality argument we present here shows this is also impossible for correlations among subsystems of an individual isolated composite system. Neither of them can be used to build up a world consisting of some local realistic structure. As a corrolary to the result we argue that entanglement cannot be considered ontologically robust. The argument has an important advantage over others because it does not need perfect correlations but only statistical correlations. It can therefore easily be tested in currently feasible experiments using four particle entanglement.Comment: Published version. Title change

    Separability criteria for genuine multiparticle entanglement

    Get PDF
    We present a method to derive separability criteria for the different classes of multiparticle entanglement, especially genuine multiparticle entanglement. The resulting criteria are necessary and sufficient for certain families of states. Further, the criteria are superior to all known entanglement criteria for many other families; also they allow the detection of bound entanglement. We next demonstrate that they are easily implementable in experiments and discuss applications to the decoherence of multiparticle entangled states.Comment: five pages, one figure, v4: final version plus a remark on arXiv:0912.187

    Addendum to "Sufficient conditions for three-particle entanglement and their tests in recent experiments"

    Full text link
    A recent paper [M. Seevinck and J. Uffink, Phys. Rev. A 65, 012107 (2002)] presented a bound for the three-qubit Mermin inequality such that the violation of this bound indicates genuine three-qubit entanglement. We show that this bound can be improved for a specific choice of observables. In particular, if spin observables corresponding to orthogonal directions are measured at the qubits (e.g., X and Y spin coordinates) then the bound is the same as the bound for states with a local hidden variable model. As a consequence, it can straightforwardly be shown that in the experiment described by J.-W. Pan et al. [Nature 403, 515 (2000)] genuine three-qubit entanglement was detected.Comment: Two pages, no figures, revtex4; minor changes before publicatio

    Sufficient conditions for three-particle entanglement and their tests in recent experiments

    Get PDF
    We point out a loophole problem in some recent experimental claims to produce three-particle entanglement. The problem consists in the question whether mixtures of two-particle entangled states might suffice to explain the experimental data. In an attempt to close this loophole, we review two sufficient conditions that distinguish between N-particle states in which all N particles are entangled to each other and states in which only M particles are entangled (with M<N). It is shown that three recent experiments to obtain three-particle entangled states (Bouwmeester et al., Pan et al., and Rauschenbeutel et al.) do not meet these conditions. We conclude that the question whether these experiments provide confirmation of three-particle entanglement remains unresolved. We also propose modifications of the experiments that would make such confirmation feasible.Comment: 16 page

    Bell inequalities and distillability in N-quantum-bit systems

    Full text link
    The relation between Bell inequalities with two two-outcome measurements per site and distillability is analyzed in systems of an arbitrary number of quantum bits. We observe that the violation of any of these inequalities by a quantum state implies that pure-state entanglement can be distilled from it. The corresponding distillation protocol may require that some of the parties join into several groups. We show that there exists a link between the amount of the Bell inequality violation and the size of the groups they have to form for distillation. Thus, a strong violation is always sufficient for full N-partite distillability. This result also allows for a security proof of multi-partite quantum key distribution (QKD) protocols.Comment: REVTEX, 12 pages, two figure
    corecore