637 research outputs found

    Efficient photon counting and single-photon generation using resonant nonlinear optics

    Full text link
    The behavior of an atomic double lambda system in the presence of a strong off-resonant classical field and a few-photon resonant quantum field is examined. It is shown that the system possesses properties that allow a single-photon state to be distilled from a multi-photon input wave packet. In addition, the system is also capable of functioning as an efficient photodetector discriminating between one- and two-photon wave packets with arbitrarily high efficiency.Comment: 4 pages, 2 figure

    Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions

    Full text link
    We present a full quantum analysis of resonant forward four-wave mixing based on electromagnetically induced transparency (EIT). In particular, we study the regime of efficient nonlinear conversion with low-intensity fields that has been predicted from a semiclassical analysis. We derive an effective nonlinear interaction Hamiltonian in the adiabatic limit. In contrast to conventional nonlinear optics this Hamiltonian does not have a power expansion in the fields and the conversion length increases with the input power. We analyze the stationary wave-mixing process in the forward scattering configuration using an exact numerical analysis for up to 10310^3 input photons and compare the results with a mean-field approach. Due to quantum effects, complete conversion from the two pump fields into the signal and idler modes is achieved only asymptotically for large coherent pump intensities or for pump fields in few-photon Fock states. The signal and idler fields are perfectly quantum correlated which has potential applications in quantum communication schemes. We also discuss the implementation of a single-photon phase gate for continuous quantum computation.Comment: 10 pages, 11 figure

    Low-light-level nonlinear optics with slow light

    Full text link
    Electromagnetically induced transparency in an optically thick, cold medium creates a unique system where pulse-propagation velocities may be orders of magnitude less than cc and optical nonlinearities become exceedingly large. As a result, nonlinear processes may be efficient at low-light levels. Using an atomic system with three, independent channels, we demonstrate a quantum interference switch where a laser pulse with an energy density of ∌23\sim23 photons per λ2/(2π)\lambda^2/(2\pi) causes a 1/e absorption of a second pulse.Comment: to be published in PR

    ANALISIS PERGERAKAN MATA UANG EUR/AUD DAN GBP/JPY DENGAN MENGGUNAKAN MOVING AVERAGE, PARABOLIC SAR DAN RELATIVE STRENGTH INDEX (RSI) PADA TIME FRAME 1 JAM PERIODE 4 MARET 2013 - 3 JUNI 2013

    Get PDF
    ANALISIS PERGERAKAN MATA UANG EUR/AUD DAN GBP/JPY DENGAN MENGGUNAKAN MOVING AVERAGE, PARABOLIC SAR DAN RELATIVE STRENGTH INDEX (RSI) PADA TIME FRAME 1 JAM PERIODE 4 MARET 2013 - 3 JUNI 2013

    Effect of headlocks on milk production and feed intake of dairy cattle

    Get PDF
    Cows previously trained with headlocks did not increase milk production or feed intake when headlocks were removed. Twoyear- old and older cows did not differ in response to headlocks and neckrails. Prudent use of headlocks increases labor efficiency of a commercial dairy. Managing a dairy without headlocks is a challenge because cows must be sorted and worked off the milking parlor flow. In the case of large milking parlors, it may be necessary to process 50-200 cows per hour. Depending upon the treatment facilities, this number of cows may create a bottleneck in the dairy. For many routine procedures, headlocks offer the simplest and most cost-effective alternative. It is important to note that headlocks can be mismanaged. This is especially true during summer months. Locking up cows for extended periods without access to water or shade may have adverse effects during summer heat stress. It is important to minimize lock-up time. Consideration should also be given to training heifers to headlocks prior to calving. It is very likely that untrained heifers may be reluctant to be placed in headlocks. If this occurs, intake could be limited during their first exposure to headlocks. If heifers are not trained to headlocks prior to calving, one should determine if they should be locked-up each day during the first week of lactation. Headlocks can be successfully used on a dairy. The critical question is how will they be managed. Successful managers of headlocks minimize restraint time, push-up or feed pens often (6- 8 times per day), and avoid use of headlocks during late morning and afternoon hours during the summer months

    Single photon production by rephased amplified spontaneous emission

    Get PDF
    The production of single photons using rephased amplified spontaneous emission is examined. This process produces single photons on demand with high efficiency by detecting the spontaneous emission from an atomic ensemble, then applying a population-inverting pulse to rephase the ensemble and produce a photon echo of the spontaneous emission events. The theoretical limits on the efficiency of the production are determined for several variants of the scheme. For an ensemble of uniform optical density, generating the initial spontaneous emission and its echo using transitions of different strengths is shown to produce single photons at 70% efficiency, limited by reabsorption. Tailoring the spatial and spectral density of the atomic ensemble is then shown to prevent reabsorption of the rephased photon, resulting in emission efficiency near unity

    Nursing churn and turnover in Australian hospitals:Nurses perceptions and suggestions for supportive strategies

    Get PDF
    BACKGROUND: This study aimed to reveal nurses’ experiences and perceptions of turnover in Australian hospitals and identify strategies to improve retention, performance and job satisfaction. Nursing turnover is a serious issue that can compromise patient safety, increase health care costs and impact on staff morale. A qualitative design was used to analyze responses from 362 nurses collected from a national survey of nurses from medical and surgical nursing units across 3 Australian States/Territories. METHOD: A qualitative design was used to analyze responses from 362 nurses collected from a national survey of nurses from medical and surgical nursing units across 3 Australian States/Territories. RESULTS: Key factors affecting nursing turnover were limited career opportunities; poor support; a lack of recognition; and negative staff attitudes. The nursing working environment is characterised by inappropriate skill-mix and inadequate patient-staff ratios; a lack of overseas qualified nurses with appropriate skills; low involvement in decision-making processes; and increased patient demands. These issues impacted upon heavy workloads and stress levels with nurses feeling undervalued and disempowered. Nurses described supportive strategies: improving performance appraisals, responsive preceptorship and flexible employment options. CONCLUSION: Nursing turnover is influenced by the experiences of nurses. Positive steps can be made towards improving workplace conditions and ensuring nurse retention. Improving performance management and work design are strategies that nurse managers could harness to reduce turnover

    Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets

    Full text link
    We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-photon wave packets. We present analytic expressions for the two-photon wave function and show that soliton-type quantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the modes. Potential applications including quantum information processing are discussed.Comment: 7 pages, 3 figure

    The fossil record of early tetrapods: worker effort and the end-Permian mass extinction

    Get PDF
    It is important to understand the quality of the fossil record of early tetrapods (Tetrapoda, minus Lissamphibia and Amniota) because of their key role in the transition of vertebrates from water to land, their dominance of terrestrial faunas for over 100 million years of the late Palaeozoic and earlyMesozoic, and their variable fates during the end−Permian mass extinction. The first description of an early tetrapod dates back to 1824, and since then discoveries have occurred at a rather irregular pace, with peaks and troughs corresponding to some of the vicissitudes of human history through the past two centuries. As expected, the record is dominated by the well−sampled sedimentary basins of Europe and North America, but finds from other continents are increasing rapidly. Comparisons of snapshots of knowledge in 1900, 1950, and 2000 show that discovery of new species has changed the shape of the species−level diversification curve, contrary to earlier studies of family−level taxa. There is, however, little evidence that taxon counts relate to research effort (as counted by numbers of publications), and there are no biasing effects associated with differential study of different time intervals through the late Palaeozoic and Mesozoic. In fact, levels of effort are apparently not related to geological time, with no evidence that workers have spent more time on more recent parts of the record. In particular, the end−Permian mass extinction was investigated to determine whether diversity changes through that interval might reflect worker effort: it turns out that most records of early tetrapod taxa (when corrected for duration of geological series) occur in the Lower Triassic

    The Grover algorithm with large nuclear spins in semiconductors

    Full text link
    We show a possible way to implement the Grover algorithm in large nuclear spins 1/2<I<9/2 in semiconductors. The Grover sequence is performed by means of multiphoton transitions that distribute the spin amplitude between the nuclear spin states. They are distinguishable due to the quadrupolar splitting, which makes the nuclear spin levels non-equidistant. We introduce a generalized rotating frame for an effective Hamiltonian that governs the non-perturbative time evolution of the nuclear spin states for arbitrary spin lengths I. The larger the quadrupolar splitting, the better the agreement between our approximative method using the generalized rotating frame and exact numerical calculations.Comment: 11 pages, 18 EPS figures, REVTe
    • 

    corecore