3,507 research outputs found
Ground-layer wavefront reconstruction from multiple natural guide stars
Observational tests of ground layer wavefront recovery have been made in open
loop using a constellation of four natural guide stars at the 1.55 m Kuiper
telescope in Arizona. Such tests explore the effectiveness of wide-field seeing
improvement by correction of low-lying atmospheric turbulence with ground-layer
adaptive optics (GLAO). The wavefronts from the four stars were measured
simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x
5 array of square subapertures across the pupil of the telescope, allowing for
wavefront reconstruction up to the fifth radial Zernike order. We find that the
wavefront aberration in each star can be roughly halved by subtracting the
average of the wavefronts from the other three stars. Wavefront correction on
this basis leads to a reduction in width of the seeing-limited stellar image by
up to a factor of 3, with image sharpening effective from the visible to near
infrared wavelengths over a field of at least 2 arc minutes. We conclude that
GLAO correction will be a valuable tool that can increase resolution and
spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.
A New Discriminator for Gamma-Ray Burst Classification: The Epeak-Fluence Energy Ratio
Using the derived gamma-ray burst E_peak and fluences from the complete BATSE
5B Spectral Catalog, we study the ensemble characteristics of the
E_peak-fluence relation for GRBs. This relation appears to be a physically
meaningful and insightful fundamental discriminator between long and short
bursts. We discuss the results of the lower limit test of the E_peak-E_iso
relations in the E_peak-fluence plane for BATSE bursts with no observed
redshift. Our results confirm the presence of two GRB classes as well as
heavily suggesting two different GRB progenitor types.Comment: 8 pages, 3 figures, accepted for publication in Ap
Quantum privacy and quantum coherence
We derive a simple relation between a quantum channel's capacity to convey
coherent (quantum) information and its usefulness for quantum cryptography.Comment: 6 pages RevTex; two short comments added 7 October 199
Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis
The world's oceans are slowly becoming more acidic. In the last 150 yr, the pH of the oceans has dropped by similar to 0.1 units, which is equivalent to a 25 % increase in acidity. Modelling predicts the pH of the oceans to fall by 0.2 to 0.4 units by the year 2100. These changes will have significant effects on marine organisms, especially those with calcareous skeletons such as echinoderms. Little is known about the possible long-term impact of predicted pH changes on marine invertebrate larval development. Here we predict the consequences of increased CO2 (corresponding to pH drops of 0.2 and 0.4 units) on the larval development of the brittlestar Ophiothrix fragilis, which is a keystone species occurring in high densities and stable populations throughout the shelf seas of northwestern Europe (eastern Atlantic). Acidification by 0.2 units induced 100 % larval mortality within 8 d while control larvae showed 70 % survival over the same period. Exposure to low pH also resulted in a temporal decrease in larval size as well as abnormal development and skeletogenesis (abnormalities, asymmetry, altered skeletal proportions). If oceans continue to acidify as expected, ecosystems of the Atlantic dominated by this keystone species will be seriously threatened with major changes in many key benthic and pelagic ecosystems. Thus, it may be useful to monitor O. fragilis populations and initiate conservation if needed
On the Interpretation of Energy as the Rate of Quantum Computation
Over the last few decades, developments in the physical limits of computing
and quantum computing have increasingly taught us that it can be helpful to
think about physics itself in computational terms. For example, work over the
last decade has shown that the energy of a quantum system limits the rate at
which it can perform significant computational operations, and suggests that we
might validly interpret energy as in fact being the speed at which a physical
system is "computing," in some appropriate sense of the word. In this paper, we
explore the precise nature of this connection. Elementary results in quantum
theory show that the Hamiltonian energy of any quantum system corresponds
exactly to the angular velocity of state-vector rotation (defined in a certain
natural way) in Hilbert space, and also to the rate at which the state-vector's
components (in any basis) sweep out area in the complex plane. The total angle
traversed (or area swept out) corresponds to the action of the Hamiltonian
operator along the trajectory, and we can also consider it to be a measure of
the "amount of computational effort exerted" by the system, or effort for
short. For any specific quantum or classical computational operation, we can
(at least in principle) calculate its difficulty, defined as the minimum effort
required to perform that operation on a worst-case input state, and this in
turn determines the minimum time required for quantum systems to carry out that
operation on worst-case input states of a given energy. As examples, we
calculate the difficulty of some basic 1-bit and n-bit quantum and classical
operations in an simple unconstrained scenario.Comment: Revised to address reviewer comments. Corrects an error relating to
time-ordering, adds some additional references and discussion, shortened in a
few places. Figures now incorporated into tex
Simulations and cosmological inference: A statistical model for power spectra means and covariances
We describe an approximate statistical model for the sample variance
distribution of the non-linear matter power spectrum that can be calibrated
from limited numbers of simulations. Our model retains the common assumption of
a multivariate Normal distribution for the power spectrum band powers, but
takes full account of the (parameter dependent) power spectrum covariance. The
model is calibrated using an extension of the framework in Habib et al. (2007)
to train Gaussian processes for the power spectrum mean and covariance given a
set of simulation runs over a hypercube in parameter space. We demonstrate the
performance of this machinery by estimating the parameters of a power-law model
for the power spectrum. Within this framework, our calibrated sample variance
distribution is robust to errors in the estimated covariance and shows rapid
convergence of the posterior parameter constraints with the number of training
simulations.Comment: 14 pages, 3 figures, matches final version published in PR
Asymmetry During Maximal Sprint Performance in 11- to 16-Year-Old Boys
Purpose:
The aim of this study was to examine the influence of age and maturation upon magnitude of asymmetry in the force, stiffness and the spatiotemporal determinants of maximal sprint speed in a large cohort of boys.
Methods:
344 boys between the ages of 11 and 16 years completed an anthropometric assessment and a 35 m sprint test, during which sprint performance was recorded via a ground-level optical measurement system. Maximal sprint velocity, as well as asymmetry in spatiotemporal variables, modeled force and stiffness data were established for each participant. For analysis, participants were grouped into chronological age, maturation and percentile groups.
Results:
The range of mean asymmetry across age groups and variables was 2.3–12.6%. The magnitude of asymmetry in all the sprint variables was not significantly different across age and maturation groups (p > .05), except relative leg stiffness (p < .05). No strong relationships between asymmetry in sprint variables and maximal sprint velocity were evident (rs < .39).
Conclusion:
These results provide a novel benchmark for the expected magnitude of asymmetry in a large cohort of uninjured boys during maximal sprint performance. Asymmetry in sprint performance is largely unaffected by age or maturation and no strong relationships exist between the magnitude of asymmetry and maximal sprint velocity
Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal Nacellid limpets to climate change
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions
- …