22 research outputs found

    Singlet levels of the NV^{-} centre in diamond

    Get PDF
    The characteristic transition of the NV- centre at 637 nm is between 3A2{}^3\mathrm{A}_2 and 3E{}^3\mathrm{E} triplet states. There are also intermediate 1A1{}^1\mathrm{A}_1 and 1E{}^1\mathrm{E} singlet states, and the infrared transition at 1042 nm between these singlets is studied here using uniaxial stress. The stress shift and splitting parameters are determined, and the physical interaction giving rise to the parameters is considered within the accepted electronic model of the centre. It is established that this interaction for the infrared transition is due to a modification of electron-electron Coulomb repulsion interaction. This is in contrast to the visible 637 nm transition where shifts and splittings arise from modification to the one-electron Coulomb interaction. It is also established that a dynamic Jahn-Teller interaction is associated with the singlet 1E{}^1\mathrm{E} state, which gives rise to a vibronic level 115 cm1\mathrm{cm}^{-1} above the 1E{}^1\mathrm{E} electronic state. Arguments associated with this level are used to provide experimental confirmation that the 1A1{}^1\mathrm{A}_1 is the upper singlet level and 1E{}^1\mathrm{E} is the lower singlet level.Comment: 19 pages, 6 figure

    Tracking individual nanodiamonds in Drosophila melanogaster embryos

    Get PDF
    Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of individual fluorescent nanodiamonds micro-injected into Drosophila melanogaster embryos prior to cellularisation. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development to a depth of ~40 \mu m. The majority of nanodiamonds in the blastoderm cells during cellularisation exhibit free diffusion with an average diffusion coefficient of (6 ±\pm 3) x 103^{-3} \mu m2^2/s, (mean ±\pm SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 ±\pm 0.10 \mu m/s (mean ±\pm SD) \mu m/s and an average applied force of 0.07 ±\pm 0.05 pN (mean ±\pm SD). Nanodiamonds in the periplasm between the nuclei and yolk were also found to undergo free diffusion with a significantly larger diffusion coefficient of (63 ±\pm 35) x103^{-3} \mu m2^2/s (mean ±\pm SD). Driven motion in this region exhibited similar average velocities and applied forces compared to the blastoderm cells indicating the transport dynamics in the two cytoplasmic regions are analogous.Comment: 20 pages, 6 figure

    Diamond nano-pillar arrays for quantum microscopy of neuronal signals

    Get PDF
    Modern neuroscience is currently limited in its capacity to perform long term, wide-field measurements of neuron electromagnetics with nanoscale resolution. Quantum microscopy using the nitrogen vacancy centre (NV) can provide a potential solution to this problem with electric and magnetic field sensing at nano-scale resolution and good biocompatibility. However, the performance of existing NV sensing technology does not allow for studies of small mammalian neurons yet. In this paper, we propose a solution to this problem by engineering NV quantum sensors in diamond nanopillar arrays. The pillars improve light collection efficiency by guiding excitation/emission light, which improves sensitivity. More importantly, they also improve the size of the signal at the NV by removing screening charges as well as coordinating the neuron growth to the tips of the pillars where the NV is located. Here, we provide a growth study to demonstrate coordinated neuron growth as well as the first simulation of nano-scopic neuron electric and magnetic fields to assess the enhancement provided by the nanopillar geometry.Comment: 18 pages including supplementary and references, 12 figure

    Nanomechanical sensing using spins in diamond

    Full text link
    Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromechanical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.Comment: Errors in the stress susceptibility parameters present in the original arXiv version have been correcte

    NV--NV+ pair centre in 1b diamond

    No full text
    With the creation of nitrogen (NV) in 1b diamond it is common to find that the absorption and emission is predominantly of negatively charged NV centres. This occurs because electrons tunnel from the substitutional nitrogen atoms to NV to form NV−–N+ pairs. There can be a small percentage of neutral charge NV0 centres and a linear increase of this percentage can be obtained with optical intensity. Subsequent to excitation it is found that the line width of the NV− zero-phonon has been altered. The alteration arises from a change of the distribution of N+ ions and a modification of the average electric field at the NV− sites. The consequence is a change to the Stark shifts and splittings giving the change of the zero-phonon line (ZPL) width. Exciting the NV− centres enhances the density of close N+ ions and there is a broadening of the ZPL. Alternatively exciting and ionizing N0 in the lattice results in more distant distribution of N+ ions and a narrowing of the ZPL. The competition between NV− and N0 excitation results in a significant dependence on excitation wavelength and there is also a dependence on the concentration of the NV− and N0 in the samples. The present investigation involves extensive use of low temperature optical spectroscopy to monitor changes to the absorption and emission spectra particularly the widths of the ZPL. The studies lead to a good understanding of the properties of the NV−–N+ pairs in diamond. There is a critical dependence on pair separation. When the NV−–N+ pair separation is large the properties are as for single sites and a high degree of optically induced spin polarization is attainable. When the separation decreases the emission is reduced, the lifetime shortened and the spin polarization downgraded. With separations of <12 A0 there is even no emission. The deterioration occurs as a consequence of electron tunneling in the excited state from NV– to N+ and an optical cycle that involves NV0. The number of pairs with the smaller separations and poorer properties will increase with the number of nitrogen impurities and it follows that the degree of spin polarization that can be achieved for an ensemble of NV− in 1b diamond will be determined and limited by the concentration of single substitutional nitrogen. The information will be invaluable for obtaining optimal conditions when ensembles of NV− are required. As well as extensive measurements of the NV− optical ZPL observations of Stark effects associated with the infrared line at 1042 nm and the optically detected magnetic resonance at 2.87 GHz are also reported
    corecore