30 research outputs found

    Amino acids whose intracellular levels change most during aging alter chronological lifespan of fission yeast

    Get PDF
    Amino acid deprivation or supplementation can affect cellular and organismal lifespan, but we know little about the role of concentration changes in free, intracellular amino acids during aging. Here, we determine free amino-acid levels during chronological aging of non-dividing fission yeast cells. We compare wild-type with long-lived mutant cells that lack the Pka1 protein of the protein kinase A signalling pathway. In wild-type cells, total amino-acid levels decrease during aging, but much less so in pka1 mutants. Two amino acids strongly change as a function of age: glutamine decreases, especially in wild-type cells, while aspartate increases, especially in pka1 mutants. Supplementation of glutamine is sufficient to extend the chronological lifespan of wild-type but not of pka1Δ cells. Supplementation of aspartate, on the other hand, shortens the lifespan of pka1Δ but not of wild-type cells. Our results raise the possibility that certain amino acids are biomarkers of aging, and their concentrations during aging can promote or limit cellular lifespan

    A central role for TOR signalling in a yeast model for juvenile CLN3 disease

    Get PDF
    Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases

    A central role for TOR signalling in a yeast model for juvenile CLN3 disease

    Get PDF
    Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases

    Integrin-Linked Kinase Is a Functional Mn2+-Dependent Protein Kinase that Regulates Glycogen Synthase Kinase-3β (GSK-3β) Phosphorylation

    Get PDF
    Integrin-linked kinase (ILK) is a highly evolutionarily conserved, multi-domain signaling protein that localizes to focal adhesions, myofilaments and centrosomes where it forms distinct multi-protein complexes to regulate cell adhesion, cell contraction, actin cytoskeletal organization and mitotic spindle assembly. Numerous studies have demonstrated that ILK can regulate the phosphorylation of various protein and peptide substrates in vitro, as well as the phosphorylation of potential substrates and various signaling pathways in cultured cell systems. Nevertheless, the ability of ILK to function as a protein kinase has been questioned because of its atypical kinase domain.Here, we have expressed full-length recombinant ILK, purified it to >94% homogeneity, and characterized its kinase activity. Recombinant ILK readily phosphorylates glycogen synthase kinase-3 (GSK-3) peptide and the 20-kDa regulatory light chains of myosin (LC(20)). Phosphorylation kinetics are similar to those of other active kinases, and mutation of the ATP-binding lysine (K220 within subdomain 2) causes marked reduction in enzymatic activity. We show that ILK is a Mn-dependent kinase (the K(m) for MnATP is approximately 150-fold less than that for MgATP).Taken together, our data demonstrate that ILK is a bona fide protein kinase with enzyme kinetic properties similar to other active protein kinases

    Identification of nuclear genes affecting 2-Deoxyglucose resistance inSchizosaccharomyces pombe

    Get PDF
    2-Deoxyglucose (2-DG) is a toxic glucose analog. To identify genes involved in 2-DG toxicity in Schizosaccharomyces pombe, we screened a wild-type overexpression library for genes which render cells 2-DG resistant. A gene we termed odr1, encoding an uncharacterized hydrolase, led to strong resistance and altered invertase expression when overexpressed. We speculate that Odr1 neutralizes the toxic form of 2-DG, similar to the Saccharomyces cerevisiae Dog1 and Dog2 phosphatases which dephosphorylate 2-DG-6-phosphate synthesized by hexokinase. In a complementary approach, we screened a haploid deletion library to identify 2-DG-resistant mutants. This screen identified the genes snf5, ypa1, pas1 and pho7. In liquid medium, deletions of these genes conferred 2-DG resistance preferentially under glucose-repressed conditions. The deletion mutants expressed invertase activity more constitutively than the control strain, indicating defects in the control of glucose repression. No S. cerevisiae orthologs of the pho7 gene is known, and no 2-DG resistance has been reported for any of the deletion mutants of the other genes identified here. Moreover, 2-DG leads to derepressed invertase activity in S. pombe, while in S. cerevisiae it becomes repressed. Taken together, these findings suggest that mechanisms involved in 2-DG resistance differ between budding and fission yeasts

    CD8+ lymphocytes/ tumour-budding index: an independent prognostic factor representing a ‘pro-/anti-tumour' approach to tumour host interaction in colorectal cancer

    Get PDF
    BACKGROUND: The tumour-host interaction at the invasive front of colorectal cancer, including the epithelial-mesenchymal transition and its hallmark 'tumour budding', is an important area of investigation in terms of prognosis. The aim of this study was to determine the prognostic impact of a 'pro-/anti-tumour' approach defined by an established 'pro-tumour' (tumour budding) and host-related 'anti-tumour' factor of the adaptive immunological microenvironment (CD8+ lymphocytes). METHODS: Double immunostaining for CK22/CD8 on whole tissue sections (n=279; Cohort 1) and immunohistochemistry for CD8+ using tissue microarrays (n=191; Cohort 2) was carried out. Tumour buds, CD8+ and CD8+ T-lymphocytes : tumour buds indices were evaluated per high-power field. RESULTS: In Cohort 1, a low-CD8+/ buds index was associated with lymph node metastasis (P>0.001), vascular invasion (P=0.009), worse survival in univariate (P>0.001) and multivariable (P>0.001) analysis, and furthermore in lymph node-negative patients (P=0.002). In Cohort 2, the CD8+/ buds index was associated with T stage (P>0.001), N stage (P=0.041), vascular invasion (P=0.005) and survival in patients with TNM stage II (P=0.019), stage III (P=0.004), and adjuvantly untreated (P=0.009) and treated patients (P>0.001). CONCLUSION: The CD8+ lymphocyte : tumour-budding index is an independent prognostic factor in colorectal cancer and a promising approach for a future prognostic score for patients with this disease

    The immunopathology of canine vector-borne diseases

    Get PDF
    The canine vector-borne infectious diseases (CVBDs) are an emerging problem in veterinary medicine and the zoonotic potential of many of these agents is a significant consideration for human health. The successful diagnosis, treatment and prevention of these infections is dependent upon firm understanding of the underlying immunopathology of the diseases in which there are unique tripartite interactions between the microorganism, the vector and the host immune system. Although significant advances have been made in the areas of molecular speciation and the epidemiology of these infections and their vectors, basic knowledge of the pathology and immunology of the diseases has lagged behind. This review summarizes recent studies of the pathology and host immune response in the major CVBDs (leishmaniosis, babesiosis, ehrlichiosis, hepatozoonosis, anaplasmosis, bartonellosis and borreliosis). The ultimate application of such immunological investigation is the development of effective vaccines. The current commercially available vaccines for canine leishmaniosis, babesiosis and borreliosis are reviewed

    Design and Construction of a Micro Aerial Vehicle for the 2014 SAE Aero Design East Competition

    Get PDF
    This project involved the analysis, design, and fabrication of an aircraft meeting the requirements of the 2014 SAE Aero Design Competition, Micro-Class. Best competition scoring favored an aircraft of maximum payload that could be loaded into a 24”x18”x8” box. The team used various tools including wind tunnel and mathematical modeling to determine the Micro’s aerodynamics and power characteristics. Final design used a combination of conventional and high performance materials, balsa, carbon fiber, and UltraCote wing covering. Configuration was conventional with 4 wing panels totaling 90” span using an 1100 W motor. Outer wing panels were given +8 degrees of dihedral to permit two-axis control. The Micro is expected to carry 5-10 pounds of payload at speeds of 25-35 ft. /sec
    corecore