109 research outputs found

    Toward a Multi-stage Model of Hurricane Evacuation Decision: An Empirical Study of Hurricanes Katrina and Rita

    Get PDF
    This study extended previous research by testing the Protective Action Decision Model (PADM) on hurricane evacuation decisions during Hurricanes Katrina and Rita. An examination of this mediation model shows that a household’s evacuation decision, as predicted, is determined most directly by expected wind impacts and expected evacuation impediments. In turn, expected wind impacts and expected hydrological impacts are primarily determined by expected storm threat and expected rapid onset. Finally, expected storm threat, expected rapid onset, and expected evacuation impediments are determined by households’ personal characteristics, their reception of hurricane information, and their observations of social and environmental cues. These results are generally consistent with the PADM and reinforce the importance of testing multi-stage multi-equation models of hurricane evacuation

    Predicting Residents’ Responses to the May 1-4, 2010, Boston Water Contamination Incident

    Get PDF
    This study examined 110 local residents’ warning sources, warning channels, warning receipt times, message content, risk perception, and behavioral responses (warning confirmation, and consumption of untreated tap water, boiled water, bottled water, and personally chlorinated water) during the May 1-4 2010 Boston water contamination incident. Most residents received warnings from peers and news media and these warnings mentioned 2.35 of five recommended elements of a warning message—most commonly the threat and the recommended protective action. TV was the most frequent channel for additional information, partly because it was the most frequent channel of routine information, but the Internet was also a common channel for additional information. Consumption of untreated tap water declined, consumption of personally chlorinated water remained negligible, and consumption of boiled water and bottled water increased during the incident. Warning receipt from an authority increased consumption of boiled water, whereas receipt of a less specific warning tended to increase consumption of bottled water. The distribution of warning times followed a logistic (S-shaped) distribution, with the largest increase taking place during prime TV news time (4-6pm). These results call attention to the need to increase the number of comprehensive warning response studies on rapid onset disasters to provide the basis for developing a comprehensive theory that can explain similarities and differences in responses to the full range of environmental hazards

    From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils

    Get PDF
    Permafrost-affected soils of the Arctic account for 70 % or 727 Pg of the soil organic carbon (C) stored in the northern circumpolar permafrost region and therefore play a major role in the global C cycle. Most studies on the budgeting of C storage and the quality of soil organic matter (OM; SOM) in the northern circumpolar region focus on bulk soils. Thus, although there is a plethora of assumptions regarding differences in terms of C turnover or stability, little knowledge is available on the mechanisms stabilizing organic C in Arctic soils besides impaired decomposition due to low temperatures. To gain such knowledge, we investigated soils from Samoylov Island in the Lena River delta with respect to the composition and distribution of organic C among differently stabilized SOM fractions. The soils were fractionated according to density and particle size to obtain differently stabilized SOM fractions differing in chemical composition and thus bioavailability. To better understand the chemical alterations from plant-derived organic particles in these soils rich in fibrous plant residues to mineral-associated SOM, we analyzed the elemental, isotopic and chemical composition of particulate OM (POM) and clay-sized mineral-associated OM (MAOM). We demonstrate that the SOM fractions that contribute with about 17 kg C m3^{-3} for more than 60 % of the C stock are highly bioavailable and that most of this labile C can be assumed to be prone to mineralization under warming conditions. Thus, the amount of relatively stable, small occluded POM and clay-sized MAOM that currently accounts with about 10 kg C m3^{-3} for about 40 % of the C stock will most probably be crucial for the quantity of C protected from mineralization in these Arctic soils in a warmer future. Using δ15^{15}N as a proxy for nitrogen (N) balances indicated an important role of N inputs by biological N fixation, while gaseous N losses appeared less important. However, this could change, as with about 0.4 kg N m3^{-3} one third of the N is present in bioavailable SOM fractions, which could lead to increases in mineral N cycling and associated N losses under global warming. Our results highlight the vulnerability of SOM in Arctic permafrost-affected soils under rising temperatures, potentially leading to unparalleled greenhouse gas emissions from these soils

    Dynamics of downwelling in an eddy-resolving convective basin

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2341–2347, doi:10.1175/2010JPO4465.1.The mean downwelling in an eddy-resolving model of a convective basin is concentrated near the boundary where eddies are shed from the cyclonic boundary current into the interior. It is suggested that the buoyancy-forced downwelling in the Labrador Sea and the Lofoten Basin is similarly concentrated in analogous eddy formation regions along their eastern boundaries. Use of a transformed Eulerian mean depiction of the density transport reveals the central role eddy fluxes play in maintaining the adiabatic nature of the flow in a nonperiodic region where heat is lost from the boundary current. The vorticity balance in the downwelling region is primarily between stretching of planetary vorticity and eddy flux divergence of relative vorticity, although a narrow viscous boundary layer is ultimately important in closing the regional vorticity budget. This overall balance is similar in some ways to the diffusive–viscous balance represented in previous boundary layer theories, and suggests that the downwelling in convective basins may be properly represented in low-resolution climate models if eddy flux parameterizations are adiabatic, identify localized regions of eddy formations, and allow density to be transported far from the region of eddy formations.This study was supported by the National Science Foundation under Grants OCE-0726339 and OCE-0850416

    Influences of precipitation on water mass transformation and deep convection

    Get PDF
    Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1684–1700, doi:10.1175/JPO-D-11-0230.1.The influences of precipitation on water mass transformation and the strength of the meridional overturning circulation in marginal seas are studied using theoretical and idealized numerical models. Nondimensional equations are developed for the temperature and salinity anomalies of deep convective water masses, making explicit their dependence on both geometric parameters such as basin area, sill depth, and latitude, as well as on the strength of atmospheric forcing. In addition to the properties of the convective water, the theory also predicts the magnitude of precipitation required to shut down deep convection and switch the circulation into the haline mode. High-resolution numerical model calculations compare well with the theory for the properties of the convective water mass, the strength of the meridional overturning circulation, and also the shutdown of deep convection. However, the numerical model also shows that, for precipitation levels that exceed this critical threshold, the circulation retains downwelling and northward heat transport, even in the absence of deep convection.This study was supported by the National Science Foundation underGrantsOCE-0850416, OCE-0959381, andOCE-0859381.2013-04-0

    Spectro-interferometric observations of classical nova V458 Vul 2007

    Full text link
    We used the Palomar Testbed Interferometer (PTI) to resolve 2.2 μ\mum emission from the classical nova V458 Vul 2007 over the course of several days following its discovery on 2007 August 8.54 UT. We also obtained K-band photometric data and spectra of the nova during the early days of the outburst. We also used photometric measurements from the AAVSO database. This is a unique data set offering a 3-technique approach: high-resolution imaging, spectroscopy and photometry. Our analysis shows that the nova ejecta can be modeled as an inclined disk at low inclination i.e. low ellipticity which is consistent with the nova being in the fireball phase at which the outflowing gas is optically thick, confirmed by the presence of strong P-Cygni Balmer lines in the spectra. The expansion velocity is \approx1700 km s1\rm km\ s^{-1}, derived from the Hα\alpha line. By combining the nova's angular expansion rate measured by PTI with the expansion rate measured from spectroscopy, the inferred distance to the nova is 9.9-11.4 kpc. We also used the K-band fluxes and the derived size of the emission to estimate the total mass ejected from the nova 4×104M\approx 4\times 10^{-4} M_{\odot}. The quick transition of the nova from Fe II to He/N class makes V458 Vul 2007 a hybrid nova.Comment: 31 pages, 7 figures, accepted for publication in Ap

    Mammary stem cells have myoepithelial cell properties.

    Get PDF
    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.This work was funded by Cancer Research UK, Breast Cancer Campaign, the University of Cambridge, Hutchison Whampoa Limited, La Ligue Nationale Contre le Cancer (Equipe Labelisée 2013) and a grant from Agence Nationale de la Recherche ANR- 08-BLAN-0078-01 to M.A.G.This is the author accepted manuscript. The final version is available from Nature at http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb3025.html

    Trophoblast organoids as a model for maternal-fetal interactions during human placentation.

    Get PDF
    The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.Centre for Trophoblast Reearch Royal Society Dorothy Hodgkin Fellowship Marie Curie Intra-European Fellowshi
    corecore