10 research outputs found
Physiological, neuromuscular and perceived exertion responses in badminton games
The purpose of this study was to characterise the physiological, neuromuscular and perceived exertion variables during a badminton match and to assess the influence of these variables on the characteristics of the game. Each variable was measured before, every ten minutes, and ten and twenty minutes after a badminton game. Using a lactate device, a heart rate monitor, an accelerometric system, a dynamometer, a camera and a Borg scale, twelve games between elite players were analysed. An increase was found in the heart rate, blood lactate and in the recovery time, while a decrease was found in the power output of the lower and upper limb joints and shot frequency. These results suggest the capability of the players to preserve a high intensity of performance for as long as possible despite general fatigue. The fatigue induced by changes in physiological variables is affected more by the intensity of the stroke rather than the duration of the rallies. The perceived exertion is thought to be a combination of attentional and neuromuscular fatigue rather than related to changes in metabolites. Consequently, in future studies, researchers and trainers should consider the fatigue state as a means to increase playersâ ability
Biomechanical, physiological determinants and physical modeling of performance on badminton
Tout comme lâentraĂźnement, la recherche en science du sport est un facteur dĂ©terminant de la performance sportive. Ă travers lâĂ©tude dâune activitĂ© physique intermittente, le badminton, le prisme des concepts biomĂ©caniques, physiologiques et physiques convergent vers une approche pluridisciplinaire des dĂ©terminants de la performance sportive. Ainsi, lâobjectif de lâensemble de ce travail doctoral est, Ă la fois, la prĂ©diction de la performance en badminton et la comprĂ©hension des mĂ©canismes de production dâune vitesse de volant proche des 500 km/h. Les rĂ©ponses physiologiques et neuromusculaires ont permis la mise en place dâun test discriminant spĂ©cifique, prĂ©dictif du niveau dâexpertise, et proche des situations Ă©cologiques dâun match. Paradoxalement, les causes des mĂ©canismes neurophysiologiques liĂ©s Ă la fatigue induite lors dâun match prolongĂ© restent toutefois inconnues. Il apparaĂźt primordial dâapprofondir les dits mĂ©canismes vraisemblablement Ă lâorigine de la diminution de la performance sportive. Les Ă©volutions des observables de match, de la force maximale et de la puissance des membres supĂ©rieurs et infĂ©rieurs convergent vers une diminution progressive au cours de la pratique. Corollairement, la comprĂ©hension des mĂ©canismes dâoptimisation de la vitesse du volant a permis de mettre en exergue des principes biomĂ©caniques et physiques dĂ©terminant lors de la prĂ©diction dâune grande vitesse de volant lors dâune performance maximale. En effet, les principes dâadjonction des segments et dâĂ©tirement-renvoi influencent largement la vitesse de la main. En complĂ©ment, le principe de bras de levier et lâeffet Ă©lastique de la raquette permettent Ă©galement dâaccroĂźtre la vitesse de la raquette. Enfin, la conservation de la quantitĂ© de mouvement et le coefficient de restitution contribuent finalement Ă la vitesse du volant.Just like training, sport science research is a key factor in sports performance. Through the study of intermittent physical activity, in this case badminton, biomechanical, physiological and physical concepts emerge and offer a multidisciplinary approach of the determinants of sport performance. Thus, the goal of this doctoral work is both the study of badminton in the performance prediction and the understanding of the mechanisms in the production of wheel velocity close to 500 km/h. The physiological and neuromuscular responses enabled the establishment of a specific discriminatory test, predicting the level of expertise, and close to the ecological conditions of a match. Paradoxically, the causes of neurophysiological mechanisms associated with the fatigue induced by a prolonged game remain unknown. It appears heuristic to further study those mechanisms which are at the origin of a decrease in athletic performance. The evolution of observable match variables, the maximum strength and the power of the upper and lower limbs converge towards a gradual decrease in the practice. As a corollary, the understanding of the optimisation of the speed of the flywheel mechanisms helped to highlight the biomechanical and physical principles, essential in predicting a large wheel speed during a maximum performance. Indeed, the principles of adding segments and stretching shortening cycle largely influence the speed of the hand. In addition, the principle of the lever arm and the elastic effect of the racket also increase the speed of the racket. Finally, the conservation of the momentum and the restitution coefficient ultimately contribute to the speed of the shuttlecock
Déterminants biomécanique, physiologique et modélisation physique de la performance en badminton
Just like training, sport science research is a key factor in sports performance. Through the study of intermittent physical activity, in this case badminton, biomechanical, physiological and physical concepts emerge and offer a multidisciplinary approach of the determinants of sport performance. Thus, the goal of this doctoral work is both the study of badminton in the performance prediction and the understanding of the mechanisms in the production of wheel velocity close to 500 km/h. The physiological and neuromuscular responses enabled the establishment of a specific discriminatory test, predicting the level of expertise, and close to the ecological conditions of a match. Paradoxically, the causes of neurophysiological mechanisms associated with the fatigue induced by a prolonged game remain unknown. It appears heuristic to further study those mechanisms which are at the origin of a decrease in athletic performance. The evolution of observable match variables, the maximum strength and the power of the upper and lower limbs converge towards a gradual decrease in the practice. As a corollary, the understanding of the optimisation of the speed of the flywheel mechanisms helped to highlight the biomechanical and physical principles, essential in predicting a large wheel speed during a maximum performance. Indeed, the principles of adding segments and stretching shortening cycle largely influence the speed of the hand. In addition, the principle of the lever arm and the elastic effect of the racket also increase the speed of the racket. Finally, the conservation of the momentum and the restitution coefficient ultimately contribute to the speed of the shuttlecock.Tout comme lâentraĂźnement, la recherche en science du sport est un facteur dĂ©terminant de la performance sportive. Ă travers lâĂ©tude dâune activitĂ© physique intermittente, le badminton, le prisme des concepts biomĂ©caniques, physiologiques et physiques convergent vers une approche pluridisciplinaire des dĂ©terminants de la performance sportive. Ainsi, lâobjectif de lâensemble de ce travail doctoral est, Ă la fois, la prĂ©diction de la performance en badminton et la comprĂ©hension des mĂ©canismes de production dâune vitesse de volant proche des 500 km/h. Les rĂ©ponses physiologiques et neuromusculaires ont permis la mise en place dâun test discriminant spĂ©cifique, prĂ©dictif du niveau dâexpertise, et proche des situations Ă©cologiques dâun match. Paradoxalement, les causes des mĂ©canismes neurophysiologiques liĂ©s Ă la fatigue induite lors dâun match prolongĂ© restent toutefois inconnues. Il apparaĂźt primordial dâapprofondir les dits mĂ©canismes vraisemblablement Ă lâorigine de la diminution de la performance sportive. Les Ă©volutions des observables de match, de la force maximale et de la puissance des membres supĂ©rieurs et infĂ©rieurs convergent vers une diminution progressive au cours de la pratique. Corollairement, la comprĂ©hension des mĂ©canismes dâoptimisation de la vitesse du volant a permis de mettre en exergue des principes biomĂ©caniques et physiques dĂ©terminant lors de la prĂ©diction dâune grande vitesse de volant lors dâune performance maximale. En effet, les principes dâadjonction des segments et dâĂ©tirement-renvoi influencent largement la vitesse de la main. En complĂ©ment, le principe de bras de levier et lâeffet Ă©lastique de la raquette permettent Ă©galement dâaccroĂźtre la vitesse de la raquette. Enfin, la conservation de la quantitĂ© de mouvement et le coefficient de restitution contribuent finalement Ă la vitesse du volant
Changes in the Game Characteristics of a Badminton Match: A Longitudinal Study through the Olympic Game Finals Analysis in Menâs Singles
The goal of this study was to analyze, through a longitudinal study, the Olympic Badminton Menâs singles finals from the Barcelona Games (1992) to the London Games (2012) to assess some changes of the Badminton game characteristics. Six Olympic finals have been analyzed based on the official video of the Olympic Games (OG) through the temporal structure and with a notational approach. In total, 537 rallies and 5537 strokes have been analyzed. The results show a change in the gameâs temporal structure: a significant difference in the rally time, rest time and number of shots per rally (all p<0.0001; 0.09 < η2 < 0.16). Moreover, the shot frequency shows a 34.0% increase (p<0.000001; η2 = 0.17), whereas the work density revealed a 58.2% decrease (from 78% to 30.8%) as well as the effective playing time (-34.5% from 34.7±1.4% to 22.7±1.4%). This argues for an increase in the intensity of the game and a necessity for the player to use a longer resting time to recover. Lastly, the strokes distribution and the percentage of unforced and forced mistakes did not show any differences throughout the OG analysis, except for the use of the clear. This results impact on the way the training of Badminton players should be designed, especially in the temporal structure and intensity
ProlégomÚnes d'étude : les pratiquants de badminton
International audienc
Fiabilidad y validez del sensor de movimiento y el radar para medir la velocidad del volante en bĂĄdminton. Fiabilidad y validez para medir la velocidad en bĂĄdminton
Radar doppler and inertial measurement unit are often used to analyze the projectile velocity. The aim of the
present study was to analyse the reliability and validity of a specifically motion sensor (named: Zepp Tennis) and
a radar (Doppler-radar gun) for measuring projectile velocity. Thirty-four (novice, intermediate and expert) stroke
badminton smash in a located target. Projectile velocity from five smashes were extracted using Zepp Tennis and
Doppler-radar gun data. Between reproducibility of measures was determined by comparing the two sessions. Zepp
Tennis and Doppler-radar gun measures were compared with high-frequency video data to establish validity. Both
instruments were highly reproducible between trials at different velocity (intra-class correlation coefficient: 0.88-
0.94 for radar and 0.78-0.89 for motion sensor). In addition, the positioning of the radar (front of the projectile and
angulation) and the placement of the motion sensor and the complexity of the movement (forearm extension and
pronation) affect the reproducibility. In terms of validity, radar and motion sensor provides an accurate measure
but underestimate projectile velocity (-9.7% and -13.6% respectively).El radar Doppler y la unidad de mediciĂłn inercial se utilizan a menudo para analizar la velocidad del proyectil. El
objetivo de este estudio fue analizar la fiabilidad y la validez de un sensor de movimiento (denominado Zepp Tennis)
y un radar (pistola de radar Doppler) para medir la velocidad del proyectil. Treinta y cuatro jugadores (novatos,
intermedios y expertos) realizaron golpes de bĂĄdminton en un objetivo localizado. Se extrajo la velocidad del
proyectil de cinco golpes utilizando los datos del Zepp Tennis y de la pistola de radar Doppler. La reproducibilidad
entre las medidas se determinĂł comparando las dos sesiones. Las medidas del Zepp Tennis y de la pistola de radar
Doppler se compararon con los datos de vĂdeo de alta frecuencia para establecer su validez. Ambos instrumentos
fueron altamente reproducibles entre las pruebas a diferente velocidad (coeficiente de correlaciĂłn intraclase:
0,88-0,94 para el radar y 0,78-0,89 para el sensor de movimiento). AdemĂĄs, la ubicaciĂłn del radar (en frente del
proyectil y angulaciĂłn), la ubicaciĂłn del sensor de movimiento y la complejidad del movimiento (extensiĂłn y
pronación del antebrazo) afectan a la reproducibilidad. En términos de validez, el radar y el sensor de movimiento
proporcionan una medida precisa, pero subestiman la velocidad del proyectil (-9,7% y -13,6% respectivamente)
Les nouveaux outils technologiques dans le milieu du sport
La science du sport a permis de comprendre les adaptations de lâhumain face Ă des efforts extrĂȘmes. Pour obtenir des informations prĂ©cises, la technologie a ouvert le champ des possibles. Avec lâarrivĂ©e du microscope, on a pu voir les virus et les microbes invisibles Ă lâĆil nu. Cependant, ces outils scientifiques onĂ©reux ne peuvent ĂȘtre utilisĂ©s sans comprĂ©hension des rĂ©sultats. Lâapparition de la chronophotographie a favorisĂ© la quantification du mouvement et le dĂ©veloppement de la cinĂ©matique moderne. Ces nouvelles mĂ©thodes ont fait apparaĂźtre de nouvelles informations amenant Ă dâautres perspectives. Toutefois, la capture cinĂ©matique en laboratoire est contraignante pour le sportif et celui-ci ne se retrouve plus dans son « milieu naturel ». Pour rĂ©pondre Ă cela, scientifiques et ingĂ©nieurs ont mis au point, Ă lâaide des technologies actuelles, des systĂšmes afin de recueillir des donnĂ©es sur le terrain. Ă travers lâarrivĂ©e des smartphones et des appareils photos intĂ©grĂ©s, ils ont amĂ©liorĂ© la portabilitĂ© du systĂšme et lâobtention des variables. De cela, de nouvelles donnĂ©es Ă©mergent et complĂštent les connaissances dĂ©jĂ obtenues. Ainsi, la quantitĂ© dâinformations devient importante et le choix de la pertinence ou des variable(s) clĂ©(s) peut ĂȘtre altĂ©rĂ©e.Sports Science has made it possible to study human performance during extreme efforts. The arrival of the microscope gave scientists the opportunity to see viruses and microscopic organisms previously invisible to the naked eye. However, these scientific tools are expensive and require specialized skills for their use. With chronophotography human movement could be quantified and kinematic studies carried out. Nevertheless, the drawback to cinematic images taken in the laboratory is that athletes are no longer in real life situations. To overcome this problem, scientists and engineers are using modern technological advances to collect data. Smart phones and integrated cameras have the advantage of both portability and data recording. As a result, new information has been acquired which supplements the knowledge already obtained. In this way the amount of data has increased and consequently relevant key variables can be modified