4,614 research outputs found

    Coil-helix transition of polypeptide at water-lipid interface

    Get PDF
    We present the exact solution of a microscopic statistical mechanical model for the transformation of a long polypeptide between an unstructured coil conformation and an α\alpha-helix conformation. The polypeptide is assumed to be adsorbed to the interface between a polar and a non-polar environment such as realized by water and the lipid bilayer of a membrane. The interfacial coil-helix transformation is the first stage in the folding process of helical membrane proteins. Depending on the values of model parameters, the conformation changes as a crossover, a discontinuous transition, or a continuous transition with helicity in the role of order parameter. Our model is constructed as a system of statistically interacting quasiparticles that are activated from the helix pseudo-vacuum. The particles represent links between adjacent residues in coil conformation that form a self-avoiding random walk in two dimensions. Explicit results are presented for helicity, entropy, heat capacity, and the average numbers and sizes of both coil and helix segments.Comment: 22 pages, 12 figures, accepted for publication by JSTA

    Coherent backscattering of Bose-Einstein condensates in two-dimensional disorder potentials

    Get PDF
    We study quantum transport of an interacting Bose-Einstein condensate in a two-dimensional disorder potential. In the limit of vanishing atom-atom interaction, a sharp cone in the angle-resolved density of the scattered matter wave is observed, arising from constructive interference between amplitudes propagating along reversed scattering paths. Weak interaction transforms this coherent backscattering peak into a pronounced dip, indicating destructive instead of constructive interference. We reproduce this result, obtained from the numerical integration of the Gross-Pitaevskii equation, by a diagrammatic theory of weak localization in presence of a nonlinearity.Comment: 4 pages, 4 figure

    Towards many colors in FISH on 3D-preserved interphase nuclei

    Get PDF
    The article reviews the existing methods of multicolor FISH on nuclear targets, first of all, interphase chromosomes. FISH proper and image acquisition are considered as two related components of a single process. We discuss (1) M-FISH (combinatorial labeling + deconvolution + widefield microscopy); (2) multicolor labeling + SIM (structured illumination microscopy); (3) the standard approach to multicolor FISH + CLSM (confocal laser scanning microscopy; one fluorochrome - one color channel); (4) combinatorial labeling + CLSM; (5) non-combinatorial labeling + CLSM + linear unmixing. Two related issues, deconvolution of images acquired with CLSM and correction of data for chromatic Z-shift, are also discussed. All methods are illustrated with practical examples. Finally, several rules of thumb helping to choose an optimal labeling + microscopy combination for the planned experiment are suggested. Copyright (c) 2006 S. Karger AG, Basel

    The thermal QCD transition with two flavours of twisted mass fermions

    Full text link
    We investigate the thermal QCD transition with two flavors of maximally twisted mass fermions for a set of pion masses, 300 MeV \textless mπm_\pi \textless 500 MeV, and lattice spacings aa \textless 0.09 fm. We determine the pseudo-critical temperatures and discuss their extrapolation to the chiral limit using scaling forms for different universality classes, as well as the scaling form for the magnetic equation of state. For all pion masses considered we find resonable consistency with O(4) scaling plus leading corrections. However, a true distinction between the O(4) scenario and a first order scenario in the chiral limit requires lighter pions than are currently in use in simulations of Wilson fermions.Comment: 11 pages, 11 figure

    Interface-mediated interactions: Entropic forces of curved membranes

    Full text link
    Particles embedded in a fluctuating interface experience forces and torques mediated by the deformations and by the thermal fluctuations of the medium. Considering a system of two cylinders bound to a fluid membrane we show that the entropic contribution enhances the curvature-mediated repulsion between the two cylinders. This is contrary to the usual attractive Casimir force in the absence of curvature-mediated interactions. For a large distance between the cylinders, we retrieve the renormalization of the surface tension of a flat membrane due to thermal fluctuations.Comment: 11 pages, 5 figures; final version, as appeared in Phys. Rev.

    Interaction and thermodynamics of spinons in the XX chain

    Get PDF
    The mapping between the fermion and spinon compositions of eigenstates in the one-dimensional spin-1/2 XX model on a lattice with N sites is used to describe the spinon interaction from two different perspectives: (i) For finite N the energy of all eigenstates is expressed as a function of spinon momenta and spinon spins, which, in turn, are solutions of a set of Bethe ansatz equations. The latter are the basis of an exact thermodynamic analysis in the spinon representation of the XX model. (ii) For N -> infinity the energy per site of spinon configurations involving any number of spinon orbitals is expressed as a function of reduced variables representing momentum, filling, and magnetization of each orbital. The spins of spinons in a single orbital are found to be coupled in a manner well described by an Ising-like equivalent-neighbor interaction, switching from ferromagnetic to antiferromagnetic as the filling exceeds a critical level. Comparisons are made with results for the Haldane-Shastry model.Comment: 16 pages, 3 figure

    Insulating phases of the infinite-dimensional Hubbard model

    Full text link
    A theory is developed for the T=0 Mott-Hubbard insulating phases of the infinite-dimensional Hubbard model at half-filling, including both the antiferromagnetic (AF) and paramagnetic (P) insulators. Local moments are introduced explicitly from the outset, enabling ready identification of the dominant low energy scales for insulating spin- flip excitations. Dynamical coupling of single-particle processes to the spin-flip excitations leads to a renormalized self-consistent description of the single-particle propagators that is shown to be asymptotically exact in strong coupling, for both the AF and P phases. For the AF case, the resultant theory is applicable over the entire U-range, and is discussed in some detail. For the P phase, we consider in particular the destruction of the Mott insulator, the resultant critical behaviour of which is found to stem inherently from proper inclusion of the spin-flip excitations.Comment: 13 pages Revtex, 12 postscript figure

    Quasiparticles governing the zero-temperature dynamics of the 1D spin-1/2 Heisenberg antiferromagnet in a magnetic field

    Get PDF
    The T=0 dynamical properties of the one-dimensional (1D) s=1/2s=1/2 Heisenberg antiferromagnet in a uniform magnetic field are studied via Bethe ansatz for cyclic chains of NN sites. The ground state at magnetization 0<Mz<N/20<M_z<N/2, which can be interpreted as a state with 2Mz2M_z spinons or as a state of MzM_z magnons, is reconfigured here as the vacuum for a different species of quasiparticles, the {\em psinons} and {\em antipsinons}. We investigate three kinds of quantum fluctuations, namely the spin fluctuations parallel and perpendicular to the direction of the applied magnetic field and the dimer fluctuations. The dynamically dominant excitation spectra are found to be sets of collective excitations composed of two quasiparticles excited from the psinon vacuum in different configurations. The Bethe ansatz provides a framework for (i) the characterization of the new quasiparticles in relation to the more familiar spinons and magnons, (ii) the calculation of spectral boundaries and densities of states for each continuum, (iii) the calculation of transition rates between the ground state and the dynamically dominant collective excitations, (iv) the prediction of lineshapes for dynamic structure factors relevant for experiments performed on a variety of quasi-1D antiferromagnetic compounds, including KCuF3_3, Cu(C4_4H4_4N2)(NO3)2_2)(NO_3)_2, and CuGeO3_3.Comment: 13 pages, 12 figure

    Contact lines for fluid surface adhesion

    Full text link
    When a fluid surface adheres to a substrate, the location of the contact line adjusts in order to minimize the overall energy. This adhesion balance implies boundary conditions which depend on the characteristic surface deformation energies. We develop a general geometrical framework within which these conditions can be systematically derived. We treat both adhesion to a rigid substrate as well as adhesion between two fluid surfaces, and illustrate our general results for several important Hamiltonians involving both curvature and curvature gradients. Some of these have previously been studied using very different techniques, others are to our knowledge new. What becomes clear in our approach is that, except for capillary phenomena, these boundary conditions are not the manifestation of a local force balance, even if the concept of surface stress is properly generalized. Hamiltonians containing higher order surface derivatives are not just sensitive to boundary translations but also notice changes in slope or even curvature. Both the necessity and the functional form of the corresponding additional contributions follow readily from our treatment.Comment: 8 pages, 2 figures, LaTeX, RevTeX styl
    • …
    corecore