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We study quantum transport of an interacting Bose-Einstein condensate in a two-dimensional
disorder potential. In the limit of vanishing atom-atom interaction, a sharp cone in the angle-
resolved density of the scattered matter wave is observed, arising from constructive interference
between amplitudes propagating along reversed scattering paths. Weak interaction transforms this
coherent backscattering peak into a pronounced dip, indicating destructive instead of constructive
interference. We reproduce this result, obtained from the numerical integration of the Gross-Pita-
evskii equation, by a diagrammatic theory of weak localization in presence of a nonlinearity.
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The past years have witnessed an increasing number
of theoretical and experimental research activities on the
behaviour of ultracold atoms in magnetic or optical dis-
order potentials [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
A central aim in this context is the realization and un-
ambiguous identification of strong Anderson localization
with Bose-Einstein condensates, which was attempted by
several experimental groups [1, 2, 3] with recent success
[4, 5], and theoretically studied both from the perspec-
tive of the expansion process of the condensate [6] as well
as from the scattering perspective [7, 8]. Complementary
studies were focused on localization properties of Bogoli-
ubov quasiparticles [9, 10], on dipole oscillations in pres-
ence of disorder [11, 12], as well as on the realization of
Bose glass phases [13, 14].

The above-mentioned topics mainly refer to processes
that are essentially one-dimensional (1D) by nature.
Qualitatively new phenomena, however, do arise in two
or three spatial dimensions, due to the scenario of weak
localization. The latter manifests in a slight reduction of
the transmission probability of an incident wave through
a disordered region as compared to the classically ex-
pected value, due to constructive interference between
backscattered paths and their time-reversed counter-
parts. This interference phenomenon particularly leads
to a cone-shaped enhancement of the backscattering cur-
rent in the direction reverse to the incident beam, which
was indeed observed [15] and theoretically analyzed [16]
in light scattering processes from disordered media. Re-
lated weak localization effects also arise in electronic
mesoscopic physics, leading to characteristic peaks in the
magneto-resistance [17, 18].

In this Letter, we investigate the phenomenon of co-
herent backscattering with atomic Bose-Einstein conden-
sates that propagate in presence of two-dimensional (2D)
disorder potentials. An essential ingredient that comes
into play here is the interaction between the atoms of the
condensate. On the mean-field level, this is accounted for
by the nonlinear term in the Gross-Pitaevskii equation

describing the time evolution of the condensate wavefunc-
tion. Indeed, nonlinearities do also appear in scattering
processes of light e.g. from a gas of cold atoms, due to
the saturation of the intra-atomic transition [19, 20, 21].
In this case, however, the saturation also leads to inelas-
tic scattering [20, 21] and, in addition, the nonlinear-
ity competes with other dephasing mechanisms induced,
e.g., by polarization phenomena [22] or thermal motion
[23]. The complementary process of atomic condensates
scattering from optical random potentials in the mean-
field regime provides a cleaner situation where the coher-
ence of the atomic wavefunction remains well preserved
in the presence of the nonlinearity. As we shall argue be-
low, this leads to substantial modifications of the coher-
ent backscattering feature. In particular, the interaction
turns constructive into destructive interference, leading
to a negative coherent backscattering peak height. This
is reminiscent of the weak antilocalization effects due to
spin-orbit interaction observed for mesoscopic magneto-
transport [24].

The starting point of our investigation is the time-
dependent 2D Gross-Pitaevskii equation describing the
mean-field dynamics of the condensate in presence of the
disorder potential V (~r) [~r ≡ (x, y)],

i~
∂

∂t
ψ(~r, t) =

(
− ~2

2m
∆ + V (~r) + g̃(x)|ψ(~r, t)|2

)
ψ(~r, t)

+ S(t)δ(x− x0) exp(−iµt/~) , (1)

where S(t) denotes a source term simulating the coherent
injection of matter waves with chemical potential µ from
an external reservoir onto the scattering region [7]. In
the numerical integration of Eq. (1), S(t) is adiabatically
increased from zero to a final value S0 that corresponds
to a fixed incident current density jin. Periodic boundary
conditions are imposed on the transverse boundaries (in y
direction) of the numerical grid to ensure a homogeneous
flow in absence of disorder, whereas absorbing boundary
conditions applied at the edges of the longitudinal (x)
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FIG. 1: (Color online) Scattering geometry and stationary
scattering state associated with a randomly generated disor-
der potential. The left-hand side displays V (x, y) in a gray-
scale plot and shows the spatial variation of the nonlinear-
ity g(x). The upper right panel shows the density of the
corresponding scattering state that is populated through the
numerical integration of the inhomogeneous Gross-Pitaevskii
equation (1). The lower right panel shows the decay of the
coherent mode |〈ψ〉|2 and the density 〈|ψ|2〉 with x, averaged
over y for ∼ 103 randomly generated disorder configurations.
Parameters: kL = 40, kW = 120, kσ = 0.5, V0 = 0.614µ,
g = 0.005, jin = ~k3/m, with k ≡

√
2mµ/~.

direction allow us to inhibit artificial backreflection of
outgoing waves with rather high accuracy [25].

In Eq. (1), the effective 2D interaction strength is writ-
ten as g̃(x) ≡ ~2g(x)/(2m), with the dimensionless non-
linearity parameter g(x). In presence of a harmonic con-
finement of the condensate in the third spatial dimen-
sion with the oscillator length a⊥(x) ≡

√
~/[mω⊥(x)],

we have g(x) = 4
√

2πas/a⊥(x), where as denotes the s-
wave scattering length of the atoms. We assume that
g(x) is adiabatically ramped on and off in front of and
behind the disorder region, as shown in Fig. 1. Physi-
cally, this spatial variation of the nonlinearity, which is
needed in order to avoid nonlinear effects at the posi-
tion of the source and the absorbing boundaries, would
correspond to a finite extent of the transverse harmonic
confinement into which the condensate is propagating.
As for the disorder potential V (~r), we choose a Gaus-
sian random process characterized by a vanishing mean
value 〈V (~r)〉 = 0 and a Gaussian correlation function
〈V (~r)V (~r + ∆~r)〉 = V 2

0 e−∆r2/2σ2
with correlation length

σ. We focus in the following on the parameters kσ = 0.5,
with k ≡

√
2mµ/~ the wavenumber of the incident beam,

and V0/µ = 0.614. The incident current density reads
jin = ~k|ψ0|2/m, where we set ψ0 = k for the amplitude
of the incident wave [26].

At the above values for σ and V0, scattering in the
disorder region is approximately isotropic. This is quan-
titatively expressed by the equivalence of the two rele-
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FIG. 2: Scattering mean free path `s (left panel) and trans-
port mean free path `tr (right panel) in the disorder poten-
tial for kσ = 0.5 in absence of the nonlinearity. In the left
panel, the numerically computed lengths are compared with
the Born approximation (2) (solid line) and in the right panel
with the Boltzmann mean free path (3) (`B , dashed line) and
the expression (4) that takes into account weak localization
corrections (`tr, solid line). We find `tr ' `s for V0 < µ,
which characterizes isotropic scattering.

vant length scales that the disorder averages introduces
for the transport process of the condensate: the scatter-
ing mean free path `s, which describes the average decay
of the incident coherent mode inside the disorder region
according to |〈ψ(~r)〉|2 ∝ exp(−x/`s), and the transport
mean free path `tr, which characterizes the decay of the
average density 〈|ψ(~r)|2〉 (see Fig. 1). In absence of the
nonlinearity, the scattering mean free path is in leading
order in V0 given by the Born approximation

(k`s)−1 ' (π/2)(V0/µ)2(kσ)2I0(k2σ2) exp(−k2σ2) (2)

where Ij(ξ) is the modified Bessel function of order j.
The transport mean free path can be extracted from

the linear decrease of 〈|ψ(~r)|2〉 with x according to
〈|ψ(~r)|2〉 ∝ (L+ z0`tr − x), with z0 = 0.82 in two spatial
dimensions, and L the longitudinal extent of the disorder
region. In lowest order in V0, `tr is given by the Boltz-
mann transport mean free path `B defined through

`s/`B = 1− I1(k2σ2)/I0(k2σ2) . (3)

Weak localization effects lead to logarithmic corrections
that yield for k`B � 1 [27, 28]

`tr ' `B [1− 2(k`B)−1 log(L/`B)]. (4)

As shown in Fig. 2, the expressions (2) and (4) are in
good agreement with the numerically computed values
of `s and `tr for V0 < µ. Specifically at kσ = 0.5 and
V0/µ = 0.614, we find k`s ' 9.61 and k`tr ' 9.75.

The angle-resolved current in backward direction is nu-
merically computed from the decomposition of the re-
flected wave ψref(x, y) ≡ ψ(x, y) − ψ0 exp(ikx) at fixed
position x close to x0 [where g(x) is negligibly small] into
the transverse eigenmodes χn(y) ∼ exp(inπy/W ), which
support outgoing waves into the directions with the an-
gles θn ≡ arcsin[2πn/(kW )]. Figure 3 shows the average
angular density j(θ) of the backscattered current, which
is normalized such that

∫ 2π

0
j(θ)dθ = 2π. In the linear
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FIG. 3: (Color online) Angle-resolved current density of
backscattered atoms in absence and in presence of the non-
linearity, obtained from the average over ∼ 103 disorder con-
figurations (parameters as in Fig. 1; the error bars denote the
statistical standard deviation). The coherent backscattering
cone for g = 0 (black line) is transformed into a pronounced
dip for intermediate nonlinearities (g = 0.02, bold red line),
and turns into a smooth peak structure at larger values of
g (g = 0.06, dashed blue line). The inset shows the angle-
resolved current for the case of a tilted incident beam where
the source term in Eq. (1) populates the transverse eigen-
mode defined by the angle θ6 ' 0.32. In contrast to the
smooth peak, the cone and dip structures are indeed found at
the angle that corresponds to retro-reflection of the incident
beam, which confirms that they both arise due to interference
between reflected paths.

case (g = 0), we encounter the well-known cone struc-
ture at θ = 0, which is a characteristic signature of weak
localization [15, 16]. Rather small values of g ∼ 0.02 cor-
responding to g̃|ψ(~r)|2 ∼ 10−2µ, are sufficient to substan-
tially modify this cone-shaped peak. Most interestingly,
it is not washed out by the nonlinearity, but transformed
into a dip that roughly has the same shape as the peak
at g = 0. This indicates that the underlying interference
phenomenon between reflected scattering paths is still
effective at finite g, but has turned from constructive to
destructive.

The occurence of a dip in the backscattered current is
confirmed by calculations based on the diagrammatic ap-
proach for weak localization in presence of a nonlinearity
[21, 30]. Assuming the realization of a stationary scat-
tering state, the average density

〈
|ψ(~r)|2

〉
is expressed

in terms of ladder diagrams, which amounts to neglect-
ing interference, and thus describing wave transport as
a classical random walk. This assumption is valid ap-
proximately for a dilute medium, i.e. for k` � 1 with
` ≡ `B ' `tr ' `s (for isotropic scattering). Further-
more, we assume the condition g2|ψ0/k|4k` � 1 under
which scattering from the fluctuations g̃|ψ(~r)|2 of the
nonlinear refractive index is negligible compared to scat-
tering from the disorder potential V (~r) [29]. Therefore,
the average density

〈
|ψ(~r)|2

〉
remains approximately un-

affected by the nonlinearity, and thus is well described
by linear transport theory. From the average density,
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FIG. 4: Backscattered current at θ = 0 as a function of the
nonlinearity g (parameters as in Fig. 1), obtained from the
numerical simulation (symbols) and from the diagrammatic
theory, Eqs. (5-7) (solid line). The horizontal dashed line
indicates the diffuse background intensity jL(0). Negative
cone heights jC(0) < 0 leading to a dip in the angle-resolved
current density j(θ) appear for g > 0.01.

the flux backscattered in direction θ = 0 results as
jL(0) =

∫ L
0
dx exp(−x/`)

〈
|ψ(x)|2

〉
/(`|ψ0|2).

In a second step, the coherent backscattering peak
is calculated by means of crossed (Cooperon) dia-
grams, describing interference between reversed scatter-
ing paths. Following the diagrammatic approach pre-
sented in Ref. [30], we obtain the height of the coherent
backscattering peak from the transport equations

Cc(x) = |ψ0|2e−x̂/`
(

1 +
i

k

∫ x

x0

dx′g(x′)C1(x′)
)
, (5)

C1(x) =
∫ L

0

dx′

π`

[
K0

(∣∣∣∣ x̂− x′`

∣∣∣∣)(C1(x′) + Cc(x′)
)

+

+
i

k
K1

(∣∣∣∣ x̂− x′`

∣∣∣∣) 〈|ψ(x′)|2〉 × (6)

×
∫ max(x,x′)

min(x,x′)

dx′′g(x′′)
(
C1(x′′) + Cc(x′′)

)]

for the “Cooperon intensity” C1(x) and the “coherent
Cooperon intensity” Cc(x), with x̂ ≡ max(x, 0) and K0,1

the modified Bessel functions of the second kind. The
contribution to the flux scattered in backward direction
then results as

jC(0) = Re
∫ L

0

dx

`|ψ0|2
e−x/`

(
C1(x)+

+
i

k
〈|ψ(x)|2〉

∫ x

x0

dx′g(x′)C1(x′)
)
. (7)

Note that nonlinear processes also occur for x0 < x < 0
where V (r) = 0 but g(x) > 0 (see Fig. 1). Hence, the
cone height jC(0) — in contrast to the background inten-
sity jL(0) — explicitly depends on the spatial extent of
the nonlinearity region in front of the disorder potential,
and can therefore be tuned through the ramp-up of g(x).

In the absence of nonlinearity, the above equations re-
duce to linear transport theory in a two-dimensional slab,
yielding C1(x)|g=0 =

〈
|ψ(x)|2

〉
− |ψ0|2 exp(−x/`). We
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then obtain jC(0)|g=0 = jL(0)−1/2, which expresses reci-
procity symmetry, i.e. the equality of reversed path am-
plitudes (the term 1/2 describes single scattering). For
g 6= 0, however, the nonlinearity turns C1(x) into a com-
plex quantity, as evident from the terms proportional to
ig in Eqs. (5-7). This indicates an effective phase dif-
ference between the reversed scattering paths. Conse-
quently, the backscattered current jC(0) is expected to
decrease with increasing nonlinearity, and may even be-
come negative if this phase difference is sufficiently large.

This latter situation is indeed encountered if the set
of equations (5-7) is numerically solved for the system
parameters under consideration. As shown in Fig. 4, the
total flux jL(0) + jC(0) resulting from Eqs. (5-7) (solid
line) agrees rather well with the average value for j(0)
obtained from the numerical simulation (symbols). Dis-
crepancies are attributed to weak localization corrections
in the background intensity, which would specifically lead
to a reduction of the backscattered flux at g = 0, and
to an additional contribution to the Cooperon intensity,
termed C2(x) in Ref. [30], which was neglected in the
derivation of the above transport equations. Details on
these additional ingredients will be presented elsewhere.

At larger nonlinearities, g & 0.03, the numerical prop-
agation of the inhomogeneous Gross-Pitaevskii equation
(1) does not converge to a stationary scattering state,
but leads to a permanently time-dependent behaviour of
ψ(~r, t), as predicted in Refs. [29] and encountered also
in the transport of condensates through 1D disorder po-
tentials [7]. In this regime, the average backscattered
current again displays a peak around θ = 0; this peak is,
however, comparatively broad and does not arise from
a coherent backscattering phenomenon. This becomes
obvious if we inject the incident wave with a finite angle
θ6 ' 0.32 (corresponding to the transverse eigenmode χ6)
onto the disorder region. While the cone and dip struc-
tures at g = 0 and 0.02 appear, as shown in the inset of
Fig. 3, at the expected angle of coherent backscattering,
corresponding to retro-reflection of the incident beam,
the broad peak at g = 0.06 is not affected in this way.

In conclusion, the presence of a small nonlinearity re-
verts the scenario of weak localization and gives rise to a
cone-shaped dip, instead of a peak, in the angle-resolved
backscattered current density. This phenomenon appears
to be rather robust; it is numerically encountered also for
disorder potentials with longer correlation lengths σ giv-
ing rise to anisotropic scattering, and we expect its man-
ifestation also in three spatial dimensions (as predicted
by the diagrammatic theory) as well as for speckle dis-
order where diagrammatic approaches would have to be
based on the treatment of Ref. [28]. We therefore believe
that the effect would be measurable, for a reasonably
large range of parameters, in state-of-the-art transport
experiments with coherent Bose-Einstein condensates in
well-controlled disorder potentials.
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