178 research outputs found

    Matched-pair analysis of hematopoietic progenitor cell mobilization using G-CSF vs. cyclophosphamide, etoposide, and G-CSF: Enhanced CD34+ cell collections are not necessarily cost-effective

    Get PDF
    AbstractUsing matched-pair analysis, we compared two popular methods of stem cell mobilization in 24 advanced-stage breast cancer patients who underwent two consecutive mobilizing procedures as part of a tandem transplant protocol. For the first cycle, 10 microg/kg/day granulocyte colony-stimulating factor (G-CSF) was given and apheresis commenced on day 4 and continued for < or =5 days (median 3 days). One week after the first cycle of apheresis, 4000 mg/m2 cyclophosphamide, 400 mg/m2 etoposide, and 10 microg/kg G-CSF were administered for < or =16 days (cycle 2). Apheresis was initiated when the white blood cell (WBC) count exceeded 5000 cells/microL and continued for < or =5 days (median 3 days). Mean values of peripheral blood WBC (31,700+/-3200 vs. 30,700+/-3300/microL) were not significantly different between cycles 1 and 2. Mean number of mononuclear cells (MNC) collected per day was slightly greater with G-CSF mobilization than with the combination of chemotherapy and G-CSF (2.5+/-0.21x10(8) vs. 1.8+/-0.19x10(8) cells/kg). Mean daily CD34+ cell yield, however, was nearly six times higher (12.9+/-4.4 vs. 2.2+/-0.5x10(6)/kg; p = 0.01) with chemotherapy plus G-CSF. With G-CSF alone, 13% of aphereses reached the target dose of 5x10(6) CD34+ cells/kg in one collection vs. 57% with chemotherapy plus G-CSF. Transfusions of red blood cells or platelets were necessary in 18 of 24 patients in cycle 2. Three patients were hospitalized with fever for a median of 3 days after cycle 2. No patients received transfusions or required hospitalization during mobilization with G-CSF alone. Resource utilization (cost of drugs, aphereses, cryopreservation, transfusions, hospitalization) was calculated comparing the median number of collections to obtain a target CD34+ cell dose of 5x10(6) cells/kg: four using G-CSF vs. one using the combination in this data set. Resources for G-CSF mobilization cost 7326vs.7326 vs. 8693 for the combination, even though more apheresis procedures were performed using G-CSF mobilization. The cost of chemotherapy administration, more doses of G-CSF, transfusions, and hospitalizations caused cyclophosphamide, etoposide, and G-CSF to be more expensive than G-CSF alone. A less toxic and less expensive treatment than cyclophosphamide, etoposide, and G-CSF is needed to be more cost-effective than G-CSF alone for peripheral blood progenitor cell mobilization.Biol Blood Marrow Transplant 1999;5(6):379-85

    Multiregional Emergence of Mobile Pastoralism and Nonuniform Institutional Complexity across Eurasia

    Get PDF
    In this article I present a new archaeological synthesis concerning the earliest formation of mobile pastoralist economies across central Eurasia. I argue that Eurasian steppe pastoralism developed along distinct local trajectories in the western, central, and (south)eastern steppe, sparking the development of regional networks of interaction in the late fourth and third millennia BC. The “Inner Asian Mountain Corridor” exemplifies the relationship between such incipient regional networks and the process of economic change in the eastern steppe territory. The diverse regional innovations, technologies, and ideologies evident across Eurasia in the mid-third millennium BC are cast as the building blocks of a unique political economy shaped by “nonuniform” institutional alignments among steppe populations throughout the second millennium BC. This theoretical model illustrates how regional channels of interaction between distinct societies positioned Eurasian mobile pastoralists as key players in wide-scale institutional developments among traditionally conceived “core” civilizations while also enabling them to remain strategically independent and small-scale in terms of their own sociopolitical organization. The development of nonuniform institutional complexity among Eurasian pastoralists demonstrates a unique political and economic structure applicable to societies whose variable political and territorial scales are inconsistent with commonly understood evolutionary or corporate sociopolitical typologies such as chiefdoms, states, or empires

    Deciphering the Arginine-Binding Preferences at the Substrate-Binding Groove of Ser/Thr Kinases by Computational Surface Mapping

    Get PDF
    Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P−2 and P−5, commonly occupied by Arginine (Arg) in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P−2/P−5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P−5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering). The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P−2 and P−5 positions

    PerR Confers Phagocytic Killing Resistance and Allows Pharyngeal Colonization by Group A Streptococcus

    Get PDF
    The peroxide response transcriptional regulator, PerR, is thought to contribute to virulence of group A Streptococcus (GAS); however, the specific mechanism through which it enhances adaptation for survival in the human host remains unknown. Here, we identify a critical role of PerR-regulated gene expression in GAS phagocytosis resistance and in virulence during pharyngeal infection. Deletion of perR in M-type 3 strain 003Sm was associated with reduced resistance to phagocytic killing in human blood and by murine macrophages in vitro. The increased phagocytic killing of the perR mutant was abrogated in the presence of the general oxidative burst inhibitor diphenyleneiodonium chloride (DPI), a result that suggests PerR-dependent gene expression counteracts the phagocyte oxidative burst. Moreover, an isogenic perR mutant was severely attenuated in a baboon model of GAS pharyngitis. In competitive infection experiments, the perR mutant was cleared from two animals at 24 h and from four of five animals by day 14, in sharp contrast to wild-type bacteria that persisted in the same five animals for 28 to 42 d. GAS genomic microarrays were used to compare wild-type and perR mutant transcriptomes in order to characterize the PerR regulon of GAS. These studies identified 42 PerR-dependent loci, the majority of which had not been previously recognized. Surprisingly, a large proportion of these loci are involved in sugar utilization and transport, in addition to oxidative stress adaptive responses and virulence. This finding suggests a novel role for PerR in mediating sugar uptake and utilization that, together with phagocytic killing resistance, may contribute to GAS fitness in the infected host. We conclude that PerR controls expression of a diverse regulon that enhances GAS resistance to phagocytic killing and allows adaptation for survival in the pharynx

    Zebrafish brd2a and brd2b are paralogous members of the bromodomain-ET (BET) family of transcriptional coregulators that show structural and expression divergence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brd2 belongs to the bromodomain-extraterminal domain (BET) family of transcriptional co-regulators, and functions as a pivotal histone-directed recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. Brd2 facilitates expression of genes promoting proliferation and is implicated in apoptosis and in egg maturation and meiotic competence in mammals; it is also a susceptibility gene for juvenile myoclonic epilepsy (JME) in humans. The <it>brd2 </it>ortholog in <it>Drosophila </it>is a maternal effect, embryonic lethal gene that regulates several homeotic loci, including Ultrabithorax. Despite its importance, there are few systematic studies of <it>Brd2 </it>developmental expression in any organism. To help elucidate both conserved and novel gene functions, we cloned and characterized expression of <it>brd2 </it>cDNAs in zebrafish, a vertebrate system useful for genetic analysis of development and disease, and for study of the evolution of gene families and functional diversity in chordates.</p> <p>Results</p> <p>We identify cDNAs representing two paralogous <it>brd2 </it>loci in zebrafish, <it>brd2a </it>on chromosome 19 and <it>brd2b </it>on chromosome 16. By sequence similarity, syntenic and phylogenetic analyses, we present evidence for structural divergence of <it>brd2 </it>after gene duplication in fishes. <it>brd2 </it>paralogs show potential for modular domain combinations, and exhibit distinct RNA expression patterns throughout development. RNA <it>in situ </it>hybridizations in oocytes and embryos implicate <it>brd2a </it>and <it>brd2b </it>as maternal effect genes involved in egg polarity and egg to embryo transition, and as zygotic genes important for development of the vertebrate nervous system and for morphogenesis and differentiation of the digestive tract. Patterns of <it>brd2 </it>developmental expression in zebrafish are consistent with its proposed role in <it>Homeobox </it>gene regulation.</p> <p>Conclusion</p> <p>Expression profiles of zebrafish <it>brd2 </it>paralogs support a role in vertebrate developmental patterning and morphogenesis. Our study uncovers both maternal and zygotic contributions of <it>brd2</it>, the analysis of which may provide insight into the earliest events in vertebrate development, and the etiology of some forms of epilepsy, for which zebrafish is an important model. Knockdowns of <it>brd2 </it>paralogs in zebrafish may now test proposed function and interaction with homeotic loci in vertebrates, and help reveal the extent to which functional novelty or partitioning has occurred after gene duplication.</p

    Prior and Present Evidence: How Prior Experience Interacts with Present Information in a Perceptual Decision Making Task

    Get PDF
    Vibrotactile discrimination tasks have been used to examine decision making processes in the presence of perceptual uncertainty, induced by barely discernible frequency differences between paired stimuli or by the presence of embedded noise. One lesser known property of such tasks is that decisions made on a single trial may be biased by information from prior trials. An example is the time-order effect whereby the presentation order of paired stimuli may introduce differences in accuracy. Subjects perform better when the first stimulus lies between the second stimulus and the global mean of all stimuli on the judged dimension ("preferred" time-orders) compared to the alternative presentation order ("nonpreferred" time-orders). This has been conceptualised as a "drift" of the first stimulus representation towards the global mean of the stimulus-set (an internal standard). We describe the influence of prior information in relation to the more traditionally studied factors of interest in a classic discrimination task.Sixty subjects performed a vibrotactile discrimination task with different levels of uncertainty parametrically induced by increasing task difficulty, aperiodic stimulus noise, and changing the task instructions whilst maintaining identical stimulus properties (the "context").The time-order effect had a greater influence on task performance than two of the explicit factors-task difficulty and noise-but not context. The influence of prior information increased with the distance of the first stimulus from the global mean, suggesting that the "drift" velocity of the first stimulus towards the global mean representation was greater for these trials.Awareness of the time-order effect and prior information in general is essential when studying perceptual decision making tasks. Implicit mechanisms may have a greater influence than the explicit factors under study. It also affords valuable insights into basic mechanisms of information accumulation, storage, sensory weighting, and processing in neural circuits

    Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis

    Get PDF
    Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were not detected While little is known about the role of filamentous fungi and their associations with insects, these findings suggest that this isolate has the endogenous potential to degrade lignocellulose and extract nutrients from woody tissue

    Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO

    Get PDF
    Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning

    Genetically defined elevated homocysteine levels do not result in widespread changes of DNA methylation in leukocytes

    Get PDF
    BACKGROUND:DNA methylation is affected by the activities of the key enzymes and intermediate metabolites of the one-carbon pathway, one of which involves homocysteine. We investigated the effect of the well-known genetic variant associated with mildly elevated homocysteine: MTHFR 677C>T independently and in combination with other homocysteine-associated variants, on genome-wide leukocyte DNA-methylation. METHODS:Methylation levels were assessed using Illumina 450k arrays on 9,894 individuals of European ancestry from 12 cohort studies. Linear-mixed-models were used to study the association of additive MTHFR 677C>T and genetic-risk score (GRS) based on 18 homocysteine-associated SNPs, with genome-wide methylation. RESULTS:Meta-analysis revealed that the MTHFR 677C>T variant was associated with 35 CpG sites in cis, and the GRS showed association with 113 CpG sites near the homocysteine-associated variants. Genome-wide analysis revealed that the MTHFR 677C>T variant was associated with 1 trans-CpG (nearest gene ZNF184), while the GRS model showed association with 5 significant trans-CpGs annotated to nearest genes PTF1A, MRPL55, CTDSP2, CRYM and FKBP5. CONCLUSIONS:Our results do not show widespread changes in DNA-methylation across the genome, and therefore do not support the hypothesis that mildly elevated homocysteine is associated with widespread methylation changes in leukocytes
    corecore