5 research outputs found

    Global respiratory syncytial virus–related infant community deaths

    Get PDF
    Background Respiratory syncytial virus (RSV) is a leading cause of pediatric death, with >99% of mortality occurring in low- and lower middle-income countries. At least half of RSV-related deaths are estimated to occur in the community, but clinical characteristics of this group of children remain poorly characterized. Methods The RSV Global Online Mortality Database (RSV GOLD), a global registry of under-5 children who have died with RSV-related illness, describes clinical characteristics of children dying of RSV through global data sharing. RSV GOLD acts as a collaborative platform for global deaths, including community mortality studies described in this supplement. We aimed to compare the age distribution of infant deaths <6 months occurring in the community with in-hospital. Results We studied 829 RSV-related deaths <1 year of age from 38 developing countries, including 166 community deaths from 12 countries. There were 629 deaths that occurred <6 months, of which 156 (25%) occurred in the community. Among infants who died before 6 months of age, median age at death in the community (1.5 months; IQR: 0.8−3.3) was lower than in-hospital (2.4 months; IQR: 1.5−4.0; P < .0001). The proportion of neonatal deaths was higher in the community (29%, 46/156) than in-hospital (12%, 57/473, P < 0.0001). Conclusions We observed that children in the community die at a younger age. We expect that maternal vaccination or immunoprophylaxis against RSV will have a larger impact on RSV-related mortality in the community than in-hospital. This case series of RSV-related community deaths, made possible through global data sharing, allowed us to assess the potential impact of future RSV vaccines

    Malaria Chemoprevention in the Postdischarge Management of Severe Anemia

    Get PDF
    BACKGROUND Children who have been hospitalized with severe anemia in areas of Africa in which malaria is endemic have a high risk of readmission and death within 6 months after discharge. No prevention strategy specifically addresses this period. METHODS We conducted a multicenter, two-group, randomized, placebo-controlled trial in nine hospitals in Kenya and Uganda to determine whether 3 months of malaria chemoprevention could reduce morbidity and mortality after hospital discharge in children younger than 5 years of age who had been admitted with severe anemia. All children received standard in-hospital care for severe anemia and a 3-day course of artemether–lumefantrine at discharge. Two weeks after discharge, children were randomly assigned to receive dihydroartemisinin–piperaquine (chemoprevention group) or placebo, administered as 3-day courses at 2, 6, and 10 weeks after discharge. Children were followed for 26 weeks after discharge. The primary outcome was one or more hospital readmissions for any reason or death from the time of randomization to 6 months after discharge. Conditional risk-set modeling for recurrent events was used to calculate hazard ratios with the use of the Prentice–Williams–Peterson total-time approach. RESULTS From May 2016 through May 2018, a total of 1049 children underwent randomization; 524 were assigned to the chemoprevention group and 525 to the placebo group. From week 3 through week 26, a total of 184 events of readmission or death occurred in the chemoprevention group and 316 occurred in the placebo group (hazard ratio, 0.65; 95% confidence interval [CI], 0.54 to 0.78; P<0.001). The lower incidence of readmission or death in the chemoprevention group than in the placebo group was restricted to the intervention period (week 3 through week 14) (hazard ratio, 0.30; 95% CI, 0.22 to 0.42) and was not sustained after that time (week 15 through week 26) (hazard ratio, 1.13; 95% CI, 0.87 to 1.47). No serious adverse events were attributed to dihydroartemisinin–piperaquine. CONCLUSIONS In areas with intense malaria transmission, 3 months of postdischarge malaria chemoprevention with monthly dihydroartemisinin–piperaquine in children who had recently received treatment for severe anemia prevented more deaths or readmissions for any reason after discharge than placebo. (Funded by the Research Council of Norway and the Centers for Disease Control and Prevention; ClinicalTrials.gov number, NCT02671175. opens in new tab.

    Effect of monthly intermittent preventive treatment with dihydroartemisinin–piperaquine with and without azithromycin versus monthly sulfadoxine–pyrimethamine on adverse pregnancy outcomes in Africa: a double-blind randomised, partly placebo-controlled trial

    Get PDF
    Background Intermittent preventive treatment in pregnancy (IPTp) with dihydroartemisinin–piperaquine is more effective than IPTp with sulfadoxine–pyrimethamine at reducing malaria infection during pregnancy in areas with high-grade resistance to sulfadoxine–pyrimethamine by Plasmodium falciparum in east Africa. We aimed to assess whether IPTp with dihydroartemisinin–piperaquine, alone or combined with azithromycin, can reduce adverse pregnancy outcomes compared with IPTp with sulfadoxine–pyrimethamine. Methods We did an individually randomised, double-blind, three-arm, partly placebo-controlled trial in areas of high sulfadoxine–pyrimethamine resistance in Kenya, Malawi, and Tanzania. HIV-negative women with a viable singleton pregnancy were randomly assigned (1:1:1) by computer-generated block randomisation, stratified by site and gravidity, to receive monthly IPTp with sulfadoxine–pyrimethamine (500 mg of sulfadoxine and 25 mg of pyrimethamine for 1 day), monthly IPTp with dihydroartemisinin–piperaquine (dosed by weight; three to five tablets containing 40 mg of dihydroartemisinin and 320 mg of piperaquine once daily for 3 consecutive days) plus a single treatment course of placebo, or monthly IPTp with dihydroartemisinin–piperaquine plus a single treatment course of azithromycin (two tablets containing 500 mg once daily for 2 consecutive days). Outcome assessors in the delivery units were masked to treatment group. The composite primary endpoint was adverse pregnancy outcome, defined as fetal loss, adverse newborn baby outcomes (small for gestational age, low birthweight, or preterm), or neonatal death. The primary analysis was by modified intention to treat, consisting of all randomised participants with primary endpoint data. Women who received at least one dose of study drug were included in the safety analyses. This trial is registered with ClinicalTrials.gov, NCT03208179. Findings From March-29, 2018, to July 5, 2019, 4680 women (mean age 25·0 years [SD 6·0]) were enrolled and randomly assigned: 1561 (33%; mean age 24·9 years [SD 6·1]) to the sulfadoxine–pyrimethamine group, 1561 (33%; mean age 25·1 years [6·1]) to the dihydroartemisinin–piperaquine group, and 1558 (33%; mean age 24·9 years [6.0]) to the dihydroartemisinin–piperaquine plus azithromycin group. Compared with 335 (23·3%) of 1435 women in the sulfadoxine–pyrimethamine group, the primary composite endpoint of adverse pregnancy outcomes was reported more frequently in the dihydroartemisinin–piperaquine group (403 [27·9%] of 1442; risk ratio 1·20, 95% CI 1·06–1·36; p=0·0040) and in the dihydroartemisinin–piperaquine plus azithromycin group (396 [27·6%] of 1433; 1·16, 1·03–1·32; p=0·017). The incidence of serious adverse events was similar in mothers (sulfadoxine–pyrimethamine group 17·7 per 100 person-years, dihydroartemisinin–piperaquine group 14·8 per 100 person-years, and dihydroartemisinin–piperaquine plus azithromycin group 16·9 per 100 person-years) and infants (sulfadoxine–pyrimethamine group 49·2 per 100 person-years, dihydroartemisinin–piperaquine group 42·4 per 100 person-years, and dihydroartemisinin–piperaquine plus azithromycin group 47·8 per 100 person-years) across treatment groups. 12 (0·2%) of 6685 sulfadoxine–pyrimethamine, 19 (0·3%) of 7014 dihydroartemisinin–piperaquine, and 23 (0·3%) of 6849 dihydroartemisinin–piperaquine plus azithromycin treatment courses were vomited within 30 min. Interpretation Monthly IPTp with dihydroartemisinin–piperaquine did not improve pregnancy outcomes, and the addition of a single course of azithromycin did not enhance the effect of monthly IPTp with dihydroartemisinin–piperaquine. Trials that combine sulfadoxine–pyrimethamine and dihydroartemisinin–piperaquine for IPTp should be considered
    corecore