83 research outputs found
Using connectivity-based real-time fMRI neurofeedback to modulate attentional and resting state networks in people with high trait anxiety
High levels of trait anxiety are associated with impaired attentional control, changes in brain activity during attentional control tasks and altered network resting state functional connectivity (RSFC). Specifically, dorsolateral prefrontal cortex to anterior cingulate cortex (DLPFC - ACC) functional connectivity, thought to be crucial for effective and efficient attentional control, is reduced in high trait anxious individuals. The current study examined the potential of connectivity-based real-time functional magnetic imaging neurofeedback (rt-fMRI-nf) for enhancing DLPFC - ACC functional connectivity in trait anxious individuals. We specifically tested if changes in DLPFC - ACC connectivity were associated with reduced anxiety levels and improved attentional control. Thirty-two high trait anxious participants were assigned to either an experimental group (EG), undergoing veridical rt-fMRI-nf, or a control group (CG) that received sham (yoked) feedback. RSFC (using resting state fMRI), anxiety levels and Stroop task performance were assessed pre- and post-rt-fMRI-nf training. Post-rt-fMRI-nf training, relative to the CG, the EG showed reduced anxiety levels and increased DLPFC-ACC functional connectivity as well as increased RSFC in the posterior default mode network. Moreover, in the EG, changes in DLPFC - ACC functional connectivity during rt-fMRI-nf training were associated with reduced anxiety levels. However, there were no group differences in Stroop task performance. We conclude that rt-fMRI-nf targeting DLPFC - ACC functional connectivity can alter network connectivity and interactions and is a feasible method for reducing trait anxiety
PROJECTING THE IMPACT OF DEMOGRAPHIC CHANGE ON THE DEMAND FOR AND DELIVERY OF HEALTH CARE IN IRELAND. RESEARCH SERIES NUMBER 13 OCTOBER 2009
Primary care is often the first point of contact with the health care system for people requiring care. Primary care is often thought synonymous with general practitioners, but actually encompasses a large range of different professionals and services including nurses/midwives; physiotherapists; occupational therapists; dentists; opticians; chiropodists; psychologists and pharmacists. The list is not exhaustive, but still gives an indication of the wide range of services that can be grouped under the general heading of primary care. Nonetheless, GPs do have a core part to play in primary care as well as performing the role of âgate keeperâ to other health services such as accident and emergency or outpatient care in hospitals. The balance of treatment and referral between general practice and secondary care is, therefore, a very important issue and it has been argued that the under development of primary care services in Ireland in recent decades has contributed, and indeed, may be the most important reason, for the over-crowding of accident and emergency services and long waiting lists for elective procedures in Irish health care (Layte et al., 2007b; Tussing and Wren, 2006)
Continuous gastric saline perfusion elicits cardiovascular responses in freshwater rainbow trout (Oncorhynchus mykiss)
When in seawater, rainbow trout (Oncorhynchus mykiss) drink to avoid dehydration and display stroke volume (SV) mediated elevations in cardiac output (CO) and an increased proportion of CO is diverted to the gastrointestinal tract as compared to when in freshwater. These cardiovascular alterations are associated with distinct reductions in systemic and gastrointestinal vascular resistance (R-Sys and R-GI, respectively). Although increased gastrointestinal blood flow (GBF) is likely essential for osmoregulation in seawater, the sensory functions and mechanisms driving the vascular resistance changes and other associated cardiovascular changes in euryhaline fishes remain poorly understood. Here, we examined whether internal gastrointestinal mechanisms responsive to osmotic changes mediate the cardiovascular changes typically observed in seawater, by comparing the cardiovascular responses of freshwater-acclimated rainbow trout receiving continuous (for 4 days) gastric perfusion with half-strength seawater (1/2 SW, similar to 17 ppt) to control fish (i.e., no perfusion). We show that perfusion with 1/2 SW causes significantly larger increases in CO, SV and GBF, as well as reductions in R-Sys and R-GI, compared with the control, whilst there were no significant differences in blood composition between treatments. Taken together, our data suggest that increased gastrointestinal luminal osmolality is sensed directly in the gut, and at least partly, mediates cardiovascular responses previously observed in SW acclimated rainbow trout. Even though a potential role of mechano-receptor stimulation from gastrointestinal volume loading in eliciting these cardiovascular responses cannot be excluded, our study indicates the presence of internal gastrointestinal milieu-sensing mechanisms that affect cardiovascular responses when environmental salinity changes
Multi-objective Optimization of Wind Farm Layouts Under Energy Generation and Noise propagation
Wind farm design deals with the optimal placement of turbines in a wind farm. Past studies have focused on energymaximization, cost-minimization or revenue-maximization objectives. As land is more extensively exploited for onshore wind farms, wind farms are more likely to be in close proximity with human dwellings. Therefore governments, developers, and landowners have to be aware of wind farmsâ environmental impacts. After considering land constraints due to environmental features, noise generation remains the main environmental/health concern for wind farm design. Therefore, noise generation is sometimes included in optimization models as a constraint. Here we present continuous-location models for layout optimization that take noise and energy as objective functions, in order to fully characterize the design and performance spaces of the optimal wind farm layout problem. Based on Jensenâs wake model and ISO-9613-2 noise calculations, we used single- and multiobjective genetic algorithms (NSGA-II) to solve the optimization problem. Preliminary results from the biobjective optimization model illustrate the trade-off between energy generation and noise production by identifying several key parts of Pareto frontiers. In addition, comparison of single-objective noise and energy optimization models show that the turbine layouts and the inter-turbine distance distributions are different when considering these objectives individually. The relevance of these results for wind farm layout designers is explored
Energetic savings and cardiovascular dynamics of a marine euryhaline fish (Myoxocephalus scorpius) in reduced salinity
Few studies have addressed how reduced water salinity affects cardiovascular and metabolic function in marine euryhaline fishes, despite its relevance for predicting impacts of natural salinity variations and ongoing climate change on marine fish populations. Here, shorthorn sculpin (Myoxocephalus scorpius) were subjected to different durations of reduced water salinity from 33 to 15 ppt. Routine metabolic rate decreased after short-term acclimation (4-9 days) to 15 ppt, which corresponded with similar reductions in cardiac output. Likewise, standard metabolic rate decreased after acute transition (3 h) from 33 to 15 ppt, suggesting a reduced energetic cost of osmoregulation at 15 ppt. Interestingly, gut blood flow remained unchanged across salinities, which contrasts with previous findings in freshwater euryhaline teleosts (e.g., rainbow trout) exposed to different salinities. Although plasma osmolality, [Na+], [Cl-] and [Ca2+] decreased in 15 ppt, there were no signs of cellular osmotic stress as plasma [K+], [hemoglobin] and hematocrit remained unchanged. Taken together, our data suggest that shorthorn sculpin are relatively weak plasma osmoregulators that apply a strategy whereby epithelial ion transport mechanisms are partially maintained across salinities, while plasma composition is allowed to fluctuate within certain ranges. This may have energetic benefits in environments where salinity naturally fluctuates, and could provide shorthorn sculpin with competitive advantages if salinity fluctuations intensify with climate change in the future
Increased reliance on coronary perfusion for cardiorespiratory performance in seawater-acclimated rainbow trout
Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water
The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in Bacillus subtilis
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase ÏB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR
A new approach to a powered knee prosthesis: Layering powered assistance onto strictly passive prosthesis behavior
This article describes a novel approach to the control of a powered knee prosthesis where the control system provides passive behavior for most activities and then provides powered assistance only for those activities that require them. The control approach presented here is based on the categorization of knee joint function during activities into four behaviors: resistive stance behavior, active stance behavior, ballistic swing, and non-ballistic swing. The approach is further premised on the assumption that healthy non-perturbed swing-phase is characterized by a ballistic swing motion, and therefore, a replacement of that function should be similarly ballistic. The control system utilizes a six-state finite-state machine, where each state provides different constitutive behaviors (concomitant with the four aforementioned knee behaviors) which are appropriate for a range of activities. Transitions between states and torque control within states is controlled by user motion, such that the control system provides, to the extent possible, knee torque behavior as a reaction to user motion, including for powered behaviors. The control system is demonstrated on a novel device that provides a sufficiently low impedance to enable a strictly passive ballistic swing-phase, while also providing sufficiently high torque to offer powered stance-phase knee-extension during activities such as step-over stair ascent. Experiments employing the knee and control system on an individual with transfemoral amputation are presented that compare the functionality of the power-supplemented nominally passive system with that of a conventional passive microprocessor-controlled knee prosthesis
- âŠ