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HIGHLIGHTS 

 Controlled experiment on functional connectivity-based real-time fMRI 
neurofeedback 

 Reduced anxiety levels in the experimental group after neurofeedback training 

 Altered activity and connectivity in neurofeedback ROIs in the experimental group 

 Increased resting state functional connectivity in the PCC in the experimental group 
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Abstract 

High levels of trait anxiety are associated with impaired attentional control, changes in brain 

activity during attentional control tasks and altered network resting state functional 

connectivity (RSFC). Specifically, dorsolateral prefrontal cortex to anterior cingulate cortex 

(DLPFC – ACC) functional connectivity, thought to be crucial for effective and efficient 

attentional control, is reduced in high trait anxious individuals. The current study examined 

the potential of connectivity-based real-time functional magnetic imaging neurofeedback (rt-

fMRI-nf) for enhancing DLPFC – ACC functional connectivity in trait anxious individuals. We 

specifically tested if changes in DLPFC - ACC connectivity were associated with reduced 

anxiety levels and improved attentional control. Thirty-two high trait anxious participants 

were assigned to either an experimental group (EG), undergoing veridical rt-fMRI-nf, or a 

control group (CG) that received sham (yoked) feedback. RSFC (using resting state fMRI), 

anxiety levels and Stroop task performance were assessed pre- and post-rt-fMRI-nf training. 

Post-rt-fMRI-nf training, relative to the CG, the EG showed reduced anxiety levels and 

increased DLPFC-ACC functional connectivity as well as increased RSFC in the posterior default 

mode network. Moreover, in the EG, changes in DLPFC – ACC functional connectivity during 

rt-fMRI-nf training were associated with reduced anxiety levels. However, there were no 

group differences in Stroop task performance. We conclude that rt-fMRI-nf targeting DLPFC 

– ACC functional connectivity can alter network connectivity and interactions and is a feasible 

method for reducing trait anxiety.  
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Introduction 

Anxiety disorders defined by excess worry, hyperarousal, and debilitating fear are some of 

the most common psychiatric conditions in the Western world [1]. Anxiety has also been 

linked to impaired attentional control [2], changes in brain activity during attentional control 

tasks [3-6] and altered network resting state functional connectivity (RSFC) [7-9]. 

Attentional Control Theory (ACT; [10]) provides a framework describing how anxiety can 

affect attentional control and exacerbate anxiety symptoms (See ref. [2] for review). Central 

to the model is the notion that anxiety competes for limited processing resources in anxious 

individuals occupying cognitive resources that would otherwise be allocated to attentional 

control [11-13], leading to inefficient task processing and impairing the ability to inhibit 

negative thoughts and worry [10, 14]. A number of functional Magnetic Resonance Imaging 

(fMRI) studies are consistent with this prediction of ACT reporting both inefficient task related 

activation in regions important for attentional control, i.e. the dorsolateral prefrontal cortex 

(DLPFC) [4, 5, 15-17] and the anterior cingulate cortex (ACC) [18] and reduced functional 

connectivity between the DLPFC and the ACC in people with high trait anxiety [3, 18]. Such 

dysconnectivity could contribute to inefficient processing during attentional control tasks in 

people with anxiety as the ACC is thought to be important for ‘reactive’ or ‘compensatory’ 

processes [19] that update the DLPFC when increased attentional control is required [20, 21]. 

The ACC and the DLPFC are also hubs in wider attentional networks that show altered function 

in people with anxiety [8]. The ACC is part of the cingulo-opercular network (CON), important 

for error monitoring, while the DLPFC is part of the fronto-parietal network (FPN) or executive 

control network important for goal-directed attentional control. ACT predicts imbalance 

between goal-directed and stimulus driven and/or reactive attentional systems in people with 
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high trait anxiety (HTA) [10] which may in part be reflected by reduced functional connectivity 

between DLPFC and ACC [3, 4]. Consequently, reduced DLPFC-ACC functional connectivity 

may be a mechanism that underlies inefficient attentional control in people with HTA.  

Moreover, the FPN and CON interact with the default mode network (DMN), a network of 

regions involved in emotional regulation [8, 22] with major hubs in the medial PFC and 

posterior cingulate gyrus. The DMN also shows altered RSFC linked to anxiety [7, 25] and 

functional activity within the DMN is thought to be anti-correlated with activity in attentional 

control networks such as the FPN [23]. This is important because a failure to sufficiently 

deactivate the DMN may interfere with attentional network engagement leading to 

inefficient attentional control [24, 25].  

Over recent decades, researchers have attempted to design behavioural protocols to train 

attentional control and reduce symptomatology in people with anxiety. The vast majority of 

these interventions use versions of attentional or interpretative bias modification (e.g [26-

28]). However, these protocols have yielded mixed or negative results [26, 27]. Thus, new 

approaches are needed that could enhance attentional control in anxious individuals. Real-

time fMRI neurofeedback (rt-fMRI-nf) is a recent development in neuroscience that enables 

participants to monitor and self-regulate their own brain activity in targeted brain regions 

(e.g. [29-33]). Recent work also shows the potential of rt-fMRI-nf to train functional 

connectivity between brain regions (e.g. [34-36]). Neural changes induced by rt-fMRI-nf 

interventions have been associated with improvements in clinical anxiety in people with 

spider phobia [33], PTSD [37, 38] and contamination anxiety [39]. Similarly, rt-fMRI-nf has 

been used to reduce non-clinical forms of anxiety by regulating brain activity [40] and 

increasing functional connectivity between amygdala and prefrontal cortex [41]. In addition, 
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it has been shown that rt-fMRI-nf training can affect RSFC (e.g. [36, 38, 39]), and changes in 

RSFC patterns across networks i.e. in the FPN, CON and DMN; all networks linked to impaired 

attentional control in people with anxiety [8]. Thus, we chose to investigate, if rt-fMRI-nf 

targeting functional connectivity between regions in the FPN (i.e. DLPFC) and CON (i.e. ACC) 

would affect wider RSFC in these networks and RSFC in DMN regions which have also been 

implicated in anxiety [8] and impaired attentional control [25].  

Given the role of DLPFC - ACC functional connectivity in attentional control [4, 18] and the 

importance of these regions in functional networks [8] we sought to examine the potential of 

connectivity-based rt-fMRI-nf, targeting DLPFC - ACC functional connectivity, for improving 

attentional control and reducing anxiety levels in trait anxious individuals. Specifically, we 

hypothesised that connectivity-based rt-fMRI-nf training would increase functional 

connectivity between the DLPFC and ACC and that changes in DLPFC and ACC functional 

connectivity over the rt-fMRI-nf training period would be associated with reduced anxiety 

levels. We also examined if the effects of rt-fMRI-nf training would transfer to improve 

attentional control during a colour word Stroop task. Finally, we examined if rt-fMRI-nf 

training would alter RSFC in attentional control and/or default mode networks in trait anxious 

individuals.  
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Methods 

Design 

Participants underwent fMRI and offline assessment using a mixed between- and within-

subjects experimental design. Participants with high levels of trait anxiety were recruited 

using an online screening survey and subsequent phone interview before being pseudo- 

randomly assigned to an Experimental (EG) or Control Group (CG). The EG received veridical 

rt-fMRI-nf based on ACC-DLPFC functional connectivity, while the CG received sham feedback 

(see below). Assessment measures (i.e. psychometric, offline behavioural task and resting 

state fMRI data) were collected at both pre- and post-rt-fMRI-nf training time points, just 

before and after rt-fMRI-nf training. The full experimental design is illustrated in Figure 1a. 

The Consensus on the reporting and experimental design of clinical and cognitive-behavioural 

neurofeedback studies (CRED-nf checklist) was used and can be found in Supplementary 

Materials.  

 
FIGURE 1 HERE 

Participants and Assessments 

Thirty-two high trait anxious participants were recruited from 603 respondents who 

completed the State-Trait Anxiety Inventory (STAI, [42]) online to assess levels of trait anxiety. 

The online survey was administered using Qualtrics (Provo, UT) survey software. High trait 

anxiety was operationalised as STAI-Trait scores in the upper quartile of the sample 

population distribution (≥ 49). Two participants did not complete the full study protocol so 

consequently full data for 30 participants were available. Participants (22 female) ranged from 

18-33 years of age (M = 21.00 years, SD = 3.67) and had a mean estimated IQ of 109.24 (SD = 
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5.09) as measured by the National Adult Reading Test (NART; [43, 44]). There were 28 right-

handed and 2 left-handed participants as assessed by self-report. Participants were recruited 

from the University of Roehampton, Royal Holloway University of London and from the 

general public. Participants had no prior neurological or medical illness and were not using 

medication for anxiety or depression. The University of Roehampton Ethics Committee gave 

ethical approval and all participants gave written informed consent prior to taking part in the 

study. 

The Depression Anxiety Stress Scales (DASS; [45]) was used pre-rt-fMRI-nf training, and again 

post-rt-fMRI-nf training to assess short-term changes in affective states. This 42-item scale 

measures affective states over the previous seven days and is therefore more sensitive to 

change in affect than the STAI trait measure [46]. The DASS is also designed to distinguish 

between feelings of depression, anxiety and stress allowing for a specific measure of changes 

in anxiety as opposed to depression and/or stress. The DASS has excellent reliability and 

displayed good convergent and discriminant validity in a large non-clinical sample (see [47]). 

Reliability of the three subscales in this sample was determined using Cronbach’s Alpha. 

Behavioural assessment: Stroop task 

Behaviourally, attentional control pre- and post-rt-fMRI-nf training was measured using a 

colour-word Stroop task [48]. Participants responded with one of four fingers of their right 

hand to the font colour (Red, Blue, Green, & Yellow) of the word presented in the middle of 

the screen (Red, Blue, Green, & Yellow). The presentation time for each stimulus was 1000 

ms and participants were allowed 2000 ms from stimulus onset to respond (i.e. responses 

were registered from the onset of each stimulus trial). Participants were instructed to 

‘respond as quickly and as accurately as possible’ while reaction times (RT) and error rates 
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(ER) were recorded. The task consisted of 48 Congruent (colour word and font colour did 

match) and 48 Incongruent (colour word and font colour did not match) trials. Trials were 

presented in a randomized order and each trial took between 4000 and 6000 ms (inter trial 

interval 2000 to 4000 ms).  

MRI data acquisition 

MRI scans were acquired on a 3T Siemens Magnetom TIM Trio scanner (Siemens, Erlangen, 

Germany) using a 32-channel head coil at the Combined Universities Brain Imaging Centre 

(CUBIC: http://www.cubic.rhul.ac.uk). Structural T1 weighted Magnetization Prepared Rapid 

Acquisition Gradient Echo (MPRAGE) images, used for co-registration, were acquired with a 

spatial voxel resolution of 1 mm × 1 mm × 1 mm, in plane resolution of 256 × 256 × 176 slices 

and scanning time of approximately 5 minutes.  

A multi-band frequency protocol was used for both the functional localizer task and for rt-

fMRI-nf runs 1 - 4 with a TR/TE/flip angle = 1 s/33 ms/70°, field of view 192 mm × 192 mm, 

slice thickness of 3 mm giving a voxel size of 3 mm × 3 mm × 3 mm and whole brain coverage 

of 48 interleaved slices. 360 volumes were acquired in the functional localizer with a scanning 

time of 6 minutes. 420 volumes were acquired in each of the rt-fMRI-nf runs (4 runs in total), 

each rt-fMRI-nf run had a scanning time of 7 minutes.  

Resting state scans were acquired at both time points using a full-brain, anterior-to-posterior, 

T2* weighted, BOLD-sensitive gradient echo planar sequence with the following parameters: 

TR/TE/flip angle = 2 s/40 ms/70°, field of view 192 mm × 192 mm and slice thickness of 4 mm 

giving a voxel size of 3 mm × 3 mm × 4 mm and whole brain coverage of 28 interleaved slices. 

Three hundred volumes were collected during the 10-minute resting state scan.  

Functional Localizer Task 
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Pre-rt-fMRI-nf (see Figure 1) all participants (both EG and CG) performed a variation of the 

colour word Stroop task to localize functional activation in the left DLPFC and ACC regions of 

interest (ROI) and to calculate individual task-specific connectivity levels for rt-fMRI-nf. This 

task was additional to the offline Stroop task used for pre- and post - behavioural assessment. 

Behavioural responses in this functional localizer Stroop task were not analysed. The ROIs 

were chosen because of the role of DLPFC-ACC connectivity in attentional control. Both left 

and right DLPFC have been implicated in top-down attentional control and altered functioning 

in high trait anxiety (e.g. [4, 49]), we used the left DLPFC in all subjects for consistency. 

This variation of the Stroop task used Incongruent colour word trials only (e.g. the word “RED” 

printed in blue) to elicit activation in regions engaged during attentional control. Thirty-

second Rest and Task blocks were alternated with a total of six blocks per condition. At the 

beginning of each block, instructions were presented visually (2000 ms) instructing 

participants to either “REST” or “ATTEND”. During task blocks participants responded to 

Incongruent Stroop trials via a button press, each trial lasted 5000 ms with an inter-stimulus 

interval of 3000 ms. Participants were instructed to ‘respond as quickly and as accurately as 

possible’. 

Neurofeedback Training 

All participants underwent 4 x 7-minute rt-fMRI-nf runs during two separate MRI scanner 

visits approximately 1 week apart. Two rt-fMRI-nf runs were undertaken during the first visit 

and a further two runs during the second visit (Figure 1a). All participants were informed that 

the study aimed to optimise attentional control by training connectivity between two frontal 

brain areas. Whilst in the MRI scanner, participants were presented with a visual gauge 

(Figure 1b) and instructed to ‘try to move the gauge on the screen upwards’. No specific 
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examples of strategies were given [50], and participants were encouraged to change strategy 

until they could successfully move the visual gauge that represented increases in functional 

connectivity between the DLPFC-ACC ROIs. Participants were informed about the delay in the 

haemodynamic response and that they may be in the CG and thus could be receiving sham-

neurofeedback. The researchers were not blinded to the participants group identify, however 

the CG received identical instructions to the EG, while the feedback display that they viewed 

responded to yoked feedback from a previous participant in the EG. Participants were 

informed of their group identity in a follow-up call two weeks after the experiment. All 

participants were interviewed after each session, to determine which strategy they used and 

which strategy they thought was the most successful for them. Participants’ responses are 

available at Open Science Framework (DOI 10.17605/OSF.IO/SYNEU). 

Each rt-fMRI-nf run consisted of 6 Rest (25s) and 6 Regulate blocks (45s). During Regulate 

blocks the number of lines in the gauge display would vary from 0 to 10, depending on the 

sliding windowed (20 s/TRs) partial correlation between DLPFC and ACC ROI activation, while 

accounting for general brain activation in a nuisance ROI (𝑟𝐷𝐿𝑃𝐹𝐶𝐴𝐶𝐶 .𝑛𝑜𝑖𝑠𝑒). A greater number 

of lines indicated an increased partial correlation coefficient between ROIs. The feedback was 

scaled to the individuals’ range in functional connectivity during a localizer scan and was 

updated every second. 

Data Analysis  

Unless stated otherwise, all psychometric and behavioural data were analysed using R 3.4.3 

(R Core Team, 2017) and a significance threshold of p < .05 was applied. 

Power analysis 
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We used G*Power to test if analyses were sufficiently powered. Power calculations suggest 

that, with independent group sizes of n = 15 (EG & CG), the experiment would have sufficient 

power to detect a significant group difference (using a repeated measures ANOVA) for effect 

sizes > .6 (medium to large), sufficient power to detect differences within groups over time 

for effect sizes of > .34 (small to medium) and sufficient power to detect a group x time 

interaction for effect sizes of > .34 (medium). Thus, as we were testing the interaction term, 

the sample size was sufficient to detect medium effect sizes.  

Psychometric data 

Questionnaire data were considered normally distributed after visual inspection. For each 

subscale of the DASS independent t-tests were performed to test for baseline differences. 

Furthermore, mixed-measures ANOVA were used with a between-subjects factor (EG vs. CG) 

and time point (pre vs. post) as a within-subjects factor. Significant results were explored 

further with pairwise comparisons and reported at p <.05.  

Stroop Task Performance 

Participants’ mean ERs and RTs for the Stroop task were calculated for each condition 

(Congruent vs. Incongruent) and time point (pre vs. post). Mixed ANOVAs for ER and RT were 

performed. Within-subjects factors were Stroop task conditions (Congruent vs. Incongruent) 

and time point (pre vs. post). Group (CG vs. EG) was included as a between-subjects factor. 

Significant results were explored further with pairwise comparisons and reported at p<.05.  

Online real-time fMRI analysis 

Real-time online analysis of fMRI data was performed with Turbo-Brain Voyager (TBV), 

Version 3.2 (BrainInnovation B.V., Maastricht, Netherlands) and custom Python scripts 
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(Python Software Foundation, www.python.org). For both the functional localizer and rt-

fMRI-nf data (runs 1 – 4) the reconstructed DICOM images were directly transferred to an 

analysis computer that was securely networked with the MR scanner operating system. Using 

TBV, pre-processing was performed on all transferred images, including Gaussian spatial 

smoothing with a smoothing kernel of 4 mm full width half maximum (FWHM) and motion 

correction. The functional data was registered to the anatomical scan of the respective 

session. 

ROI definition during localizer functional localiser scan 

After online pre-processing in TBV, the BOLD signal acquired during the functional localizer 

task was submitted to GLM contrasting Task vs. Rest blocks (Task > Rest) to identify subject-

specific ROIs in bilateral ACC and left DLPFC where activation was greater during Incongruent 

Stroop trials relative to Congruent trials. Based on the resulting t-maps and combined with 

anatomical landmarks identified on the co-registered T1 image ROIs were defined manually 

in the left DLPFC and bilateral ACC. A default statistical threshold of t = 2.40 was initially 

applied for ROI definition and voxel resolution was the same as the fMRI data during the 

functional localizer and rt-fMRI-nf runs. ROIs for two control participants were defined based 

on the greatest overlap in all other participants, as they could not be defined based on the 

functional localizer due to technical issues. Across participants, the mean number of voxels in 

the left DLPFC ROI was 121.80 (SD = 39.90, range 23 – 198) and 108.80 (SD = 21.74, range 69 

– 135) for the bilateral ACC ROI (Figure 1c). A third ROI (nuisance) to account for general brain 

activation and global scanning effects was drawn independently of the GLM covering a large 

area in the right lateral occipital cortex, superior parietal lobe and cerebral white matter; the 

mean number of voxels in the nuisance ROI was 324.47 (SD = 62.33, range 179 – 432).  
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In the EG, time course data for all ROIs was extracted during task blocks and partial 

correlations between left DLPFC and bilateral ACC ROIs (while controlling for the nuisance 

ROI) were calculated using a custom Python script. Correlation coefficients below 0 and 

outliers (more than 2 SD from the mean) were removed. The minimum and maximum 

coefficients of the resulting values were used as references to calculate rt-fMRI-nf signal. The 

mean minimum (ConnectivityBaseline) was a partial correlation of 0.17 (SD = 0.18, range 0.00 

– 0.54) and the maximum (ConnectivityMax) was 0.81 (SD = 0.18, range 0.38 – 0.99).  

The same ROIs were used in both rt-fMRI-nf sessions (in all 4 rt-fMRI-nf runs) and were 

registered to the anatomical scan from the respective session. ROIs based on the mean ROI 

of the sample were used for a Psychophysiological Interaction analysis (PPI) in these 

participants. 

For offline fMRI data analysis, single subject ROI image files in the left DLPFC and bilateral ACC 

were registered to respective functional data and the single-subject level and then 

transformed into MNI standard space. For offline ROI analysis, the individual ROIs were 

overlaid to form one binarized mask while non-brain voxels and voxels in white matter were 

excluded.  

Calculation of Neurofeedback Signal 

After pre-processing, the BOLD signal from each rt-fMRI-nf run (1 – 4), i.e. the mean values 

for each TR within each of the three ROIs, were extracted for stimulus presentation in real-

time. A custom Python script was used to calculate and present feedback to participants 

according to Formula I: 

(I) 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑖𝑛𝑒𝑠 =  
 𝑟𝐷𝐿𝑃𝐹𝐶𝐴𝐶𝐶.𝑛𝑜𝑖𝑠𝑒  – 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑀𝑎𝑥 – 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 10 
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The Number of Lines displayed in the visual gauge display was rounded to the next integer 

and values ≥ 10 resulted in the maximum feedback display of 10. Values ≤ 0 resulted in the 

minimum feedback display of 0. The feedback was updated with every second (i.e. every TR). 

Offline Analysis of Time Course of Neurofeedback Signal 

The neurofeedback signal received by participants in the EG during rt-fMRI-nf training was 

calculated and the average for each run was scaled to DLPFC-ACC connectivity during the 

functional localizer Task. This allowed us to calculate the signal received by participants in the 

EG based on the percentage change in connectivity over each run relative to baseline 

connectivity during the localizer task (Figure 2b). In two participants the neurofeedback signal 

could not be scaled to connectivity during the functional localizer task, so this data was 

excluded. No secondary analyses were performed on these values. As participants in the CG 

received yoked feedback no neurofeedback signal was calculated in this group. 

Offline fMRI Analysis 

fMRI data processing was conducted using FEAT (FMRI Expert Analysis Tool) Version 6.00, part 

of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). Significant results are reported at 

a threshold of p < .05 (Family Wise Error (FWE) -peak-level). A binarized grey matter mask 

based on the MNI structural atlas was used to exclude voxels in white matter.  

Registration to high-resolution structural and/or standard space images was carried out using 

FLIRT [51, 52]. Registration from high resolution structural to standard space was then further 

refined using FNIRT nonlinear registration [53, 54]. The following pre-processing pipeline was 

applied; motion correction using MCFLIRT [52], non-brain removal using BET [55], spatial 

smoothing using a Gaussian kernel of FWHM 6.0 mm; grand-mean intensity normalisation of 
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the entire 4D dataset by a single multiplicative factor; high pass temporal filtering (Gaussian-

weighted least-squares straight line fitting, with sigma = 50 s). Time-series statistical analysis 

was carried out using FILM with local autocorrelation correction [56].  

Functional Localizer Task 

For Functional Localizer task data were not available in one control participant due to time 

constraints, hence the sample size in this task was N = 29 (EG = 15, CG = 14). A General Linear 

Model (GLM) was used to model data at the 1st level based on Task vs. Rest blocks. A Gamma 

convolution with a SD of 3 s and a mean lag of 6 s was applied and three motion correction 

parameters were included as regressors of no interest in all 1st level models. 1st level contrast 

images were created for each participant and then combined in a group Level analysis to 

evaluate the effect of Task > Rest. 

Neurofeedback Training Runs: PPI 

For rt-fMRI-nf runs 1 – 4 data were incomplete in one participant and were excluded from the 

analysis, hence the sample size was N = 29 (EG = 15, CG = 14). A General Linear Model (GLM) 

was used to model rt-fMRI-nf data at the 1st level using regressors for Regulate and Rest 

blocks. A Gamma convolution with a SD of 3s and a mean lag of 6s was applied and six motion 

correction parameters were included as regressors of no interest. 1st level contrast images 

were created for each rt-fMRI-nf run in each participant to examine the main effect of 

neurofeedback (Regulate > Rest). We conducted a PPI to examine rt-fMRI-nf related changes 

in functional connectivity between ROIs using the left DLPFC ROI as a seed region. Additional 

1st Level models were computed including the time series in the left DLPFC ROI in each 

participant and the interaction of this time series with Regulation vs. Rest blocks. A second 
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level contrast, contrasting rt-fMRI-nf runs within each group was then specified in each 

subject (including variance across all 4 rt-fMRI-nf runs) and the contrast run 1 vs. run 4 was 

submitted to a third level independent t-test to establish the interaction between group (EG 

vs. CG) and rt-fMRI-nf run (run 1 vs. run 4). ROI analysis with the ACC ROI was performed to 

specifically test for changes in connectivity between the left DLPFC seed region and the 

bilateral ACC. The same analysis was performed examining the interaction between group 

(EG vs. CG) and rt-fMRI-nf run (run 1 vs. run 4) based on activation during rt-fMRI-nf training 

(Regulate > Rest) and is reported in Supplementary Materials. 

To examine the association between changes in anxiety and functional connectivity during rt-

fMRI-nf between left DLPFC seed region and bilateral ACC ROIs in the EG, difference in DASS 

anxiety scores between (post – pre) were entered as a regressor into a model containing all 

rt-fMRI-nf runs (runs 1 – 4) in the EG. An ROI was performed based on the bilateral ACC ROI. 

The same analysis was performed examining changes in anxiety and activation during rt-fMRI-

nf training (Regulate > Rest) and is reported in Supplementary Materials. 

Resting State Functional Connectivity  

Resting State data was not available in two participants, hence the sample size was N = 28 (EG 

= 13, CG = 15). Resting State fMRI data was analysed using MELODIC (FMRI Expert Analysis 

Tool) Version 3.14. Probabilistic Independent Component Analysis [57] was applied to the 

pre-processed data. The resulting single subject components were manually classified as 

either meaningful components or noise components [58] to remove artefacts from the data. 

We further used FAST [59] segmentation to identify tissue classes at subject level and regress 

WM and CSF from the data. 
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Pre-processed data that has been cleared of artefacts was subsequently put into higher level 

analysis using multi-session temporal concatenation in MELODIC with an a-priori defined 

number of 15 output components. The resulting components were classified manually and by 

correlation with reference maps of validated connectivity networks using the Yeo 17 network 

solution [60, 61]. As we were specifically interested in network interactions between the DMN 

and attentional control networks, suitable components were analysed and tested for 

significance. Remaining components were discarded. The spatial maps from the group-

average were used to generate subject specific versions of the spatial maps and associated 

time series using dual regression [57, 62]. We then tested for a time x group interaction using 

randomise non-parametric permutation testing (5000 permutations) with threshold-free 

cluster enhancement [63]. 
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Results 

Psychometric and behavioural results 

The EG and CG did not differ on STAI trait anxiety scores (t(28) = 1.07, p = .296; d = 0.39, EG 

Mean = 55.33, SD = 5.19; CG Mean = 57.60, SD = 6.40) or STAI state anxiety scores (t(28) = 

0.34, p = .733; d = 0.13, EG Mean = 45.07, SD = 9.32; CG Mean = 46.33, SD = 10.75) at the time 

of recruitment. The STAI trait anxiety scores in both EG and CG were above the 70th percentile 

of the distribution based on published norms [42]. Reliability analysis of the DASS showed 

good to excellent reliability of all DASS subscales at both time points (α ≥ .87 for all subscales 

at both time points). There were no pre- rt-fMRI-nf training group differences in DASS Anxiety 

and Stress scores, however DASS Depression Scores were significantly higher in the EG at the 

pre- training time point (Supplementary Table s1). 

ANOVA revealed a non-significant effects of group (EG vs. CG) (F(1, 28) = 0.01, p = .938, ηpart² 

< .001), and time point (pre- vs. post – tr-fMRI-nf training ) (F(1, 28) = 1.64, p = .211, ηpart² = 

.055) for DASS Anxiety scores. However, there was a significant interaction between group 

and time point (F(1, 28) = 4.93, p = .035, ηpart² = .150) showing that post-rt-fMRI-nf training 

the EG had reduced DASS anxiety scores relative to pre- training (t(14) = 2.34, p = .035, d = 

0.60), an effect not seen in the CG (t(14) = -0.71, p = .490, d = 0.12; Figure 2a). Furthermore, 

this effect was specific to DASS Anxiety scores as no interaction between group and time point 

were seen in DASS Depression Scores (F(1, 28) = 2.61, p = .117, ηpart² = .085) or DASS Stress 

scores (F(1, 28) = 2.33, p = .138, , ηpart² = .077).  

FIGURE 2 HERE 

                  



20 
 

ANOVA of Stroop Task performance revealed a significant effect of condition (F(1, 28) = 15.60, 

p < .001, ηpart² = .358) with greater RT during incongruent trials and a significant effect of time 

point (F(1, 28) = 108.69, p < .001, ηpart² = .795), revealing an improvement in RT post- training 

across groups. However, interaction between group, task condition and time point (F(1, 28) = 

0.41, p = .526, ηpart² = .014) was non-significant, indicating that RT for Incongruent trials did 

not significantly improve in the EG relative to the CG post- rt-fMRI-nf training (see 

Supplementary Table s2). For ER ANOVA also revealed a significant effect of task condition 

(F(1, 28) = 6.64, p = .016, ηpart² = .192) with consistently greater ER in the Incongruent 

Condition. However the effects of group (F(1,28) = 0.35, p = .562, ηpart² < .001) and time point 

(F(1,28) = 0.93, p = 344, ηpart² = .032) were both non-significant as was the three-way 

interaction between group, task condition and time point (F(1,28) = 0.48, p = .493, ηpart² = 

.017), indicating that ER for incongruent trials did not significantly reduce in the EG relative 

to the CG post rt-fMRI-nf (see Supplementary Table s2). 

Functional Localizer Task and Time course of Neurofeedback Signal 

Whole brain analysis of fMRI data showed that during the Functional Localizer task 

(incongruent Stroop trials > Rest) activation was seen in the bilateral ACC (peak x/y/z = 

6/18/32, Z = 9.78) and in the left (peak left x/y/z = -38/42/16, Z = 5.76;) and right (peak right 

x/y/z = 36/50/28, Z = 6.91) DLPFC in the middle frontal gyrus. Whole brain analysis also 

revealed activation across further cortical, subcortical and cerebellar regions (see 

Supplementary Table s3). The neurofeedback signal received by participants in the EG across 

the 4 rt-fMRI-nf runs was derived from the partial correlation between DLPFC and ACC ROI 

activity and was scaled to baseline connectivity parameters during the Functional Localizer 
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Task. Figure 2b shows that in the EG, the neurofeedback signal increases across rt-fMRI-nf 

runs 1 - 3 before reducing during run 4.  

Functional Connectivity during Neurofeedback Training: PPI 

PPI analysis was performed with the left DLPFC ROI as a seed region. Relative to the CG, the 

EG group showed increased functional connectivity between the left DLPFC ROI (seed) and 

the bilateral ACC ROI across rt-fMRI-nf training runs (peak x/y/z = -6/34/26; Z = 5.16). 

Compared to the CG, we also observed decreased functional connectivity in the EG between 

the left DLPFC seed region and the supplementary motor area (SMA) which was partially 

covered by the bilateral ACC ROI (x/y/z = -12/0/44; Z = 4.59). (Figure3, Supplementary Table 

s4). 

FIGURE 3 HERE 

A regression analysis was then used to examine the relationship between changes in 

functional connectivity and DASS Anxiety scores. In the EG and within the ACC ROI, changes 

in DASS anxiety scores were positively associated with increased functional connectivity in 

the bilateral ACC/paracingulate sulcus (peak left x/y/z = -10/28/36; Z = 4.31, peak right x/y/z 

= 8/40/36; Z = 4.15) and with reduced functional connectivity in a more inferior region of the 

bilateral ACC ROI (peak x/y/z = -4/32/28; Z = 4.25; Figure 4; Supplementary Table s5)  

FIGURE 4 HERE  

Resting-State Functional Connectivity (RSFC) 

From the 15 components derived in a group ICA, independent component 4 was selected 

based on our a-priori hypothesis for testing group differences between pre- and post-rt-fMRI-

nf training (Figure 5a) in attentional and default mode networks. This component explained 
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7.03% of variance in the dataset and shows overlap with attention, central executive and 

default mode networks assessed according to the Yeo 17-network solution [60, 61]. More 

specifically, the component shows positive RSFC in ACC (peak x/y/z = 4/14/28) and bilateral 

anterior insula (left peak x/y/z = -34/4/0; right peak x/y/z = 36/2/0), thus resembling the 

topological structure of the CON. Independent component 4 also shows positive RSFC in the 

bilateral inferior prefrontal cortex (left peak x/y/z = -44/30/10; right peak x/y/z = 46/32/4), 

which are hubs within FPN. Negative RSFC was also seen in DMN; bilateral Angular Gyrus (left 

peak x/y/z = -44/-62/40; right peak x/y/z = 44/-62/44), bilateral superior frontal gyrus (left 

peak x/y/z = -18/24/48; right peak x/y/z = 20/26/48) and Posterior Cingulate Cortex (PCC; 

peak x/y/z = -2/-44/28) [8, 22, 61]. Comparing pre and post rt-fMRI-nf resting-state scans, 

relative to the CG, the EG showed increased RSFC in the posterior DMN in the bilateral PCC 

(post > pre rt-fMRI-nf training) (peak x/y/z = 0/-24/38, t = 5.55, p = .025, Figure 5b). 

FIGURE 5 HERE 
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Discussion 

Using a between-subjects controlled experimental design we sought to examine the potential 

of connectivity-based rt-fMRI-nf for enhancing connectivity in attentional control networks 

and reducing anxiety levels in high trait anxious individuals. We also examined if connectivity 

based rt-fMRI-nf training would improve performance during an offline attentional control 

task. We targeted functional connectivity between left DLPFC and bilateral ACC as coupling 

between these regions is known to be important for attentional control and is reduced in 

people with high levels of trait anxiety [15, 64]. Whilst no performance improvement on an 

offline attentional control task was seen, relative to the CG, the EG showed a decrease in 

anxiety levels post-rt-fMRI-nf training that was not seen in the CG. This effect appeared to be 

specific to anxiety as no post-training effects were seen for depression and stress levels. 

Furthermore, PPI analysis showed that high trait anxious individuals successfully enhanced 

functional connectivity between the left DLPFC and bilateral ACC when provided with veridical 

visual feedback compared to sham feedback. An area in the bilateral SMA also showed 

decreased connectivity over the training period. Importantly, in the EG, increased functional 

connectivity between the DLPFC and ACC was associated with reduced anxiety levels over the 

rt-fMRI-nfb training period. However, in a more inferior region of the ACC ROI, we observed 

an association between reduced DLPFC - ACC functional connectivity and decreased anxiety 

levels. Together these results show that participants in the EG were able to self-regulate 

DLPFC – ACC functional connectivity, guided by veridical rt-fMRI-nf feedback resulting in 

altered functional connectivity in attentional networks that was associated with reduced 

anxiety levels.  
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Whilst these findings suggest that connectivity-based rt-fMRI-nf may be a feasible approach 

for reducing anxiety levels in anxious individuals, we did not observe any behavioural effects 

on an offline task assessing attentional control at a post- (vs. pre-) rt-fMRI-nf training time 

point. However, this finding is not inconsistent with the performance effectiveness prediction 

of ACT which proposes that task performance is sometimes maintained in anxious individuals 

albeit with reduced processing efficiency, i.e., the quality of performance relative to use of 

processing or cognitive resources. Several studies have shown increased DLPFC activation in 

people with high trait anxiety without concomitant improvements in performance 

effectiveness (i.e. processing inefficiency; [4, 5, 16]). Thus, increased DLPFC-ACC functional 

connectivity seen during rt-fMRI-nf training in the EG may have improved attentional network 

processing efficiency, leading to a reduction anxiety levels, but without a demonstrable effect 

on task processing effectiveness. However, it should be noted that it is also possible that our 

study may not have produced a large enough effect in task performance to detect a significant 

change in performance over the rt-fMRI-nf training period. Results of previous studies 

comparing high and low trait anxiety groups on performance in the colour Stroop task have 

varied between small to medium effect sizes [4, 65] and this study was not sufficiently 

powered to detect small effect sizes. Future studies would need to recruit larger samples or 

use a more sensitive attentional control task, while it may also be of value to examine changes 

in brain activation during attentional control tasks to better understand performance 

efficiency versus effectiveness.  

Given that anxiety is thought to affect connectivity within and between functional networks 

[8], we examined if connectivity based rt-fMRI-nf training would also alter network RSFC in 

trait anxious individuals. Using the Yeo 17 Network solution we first identified an independent 
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component containing resting state networks encompassing regions within the CON, FPN and 

DMN [22, 66, 67], all functional networks thought to be affected by anxiety [8].  

Our analysis of RSFC data showed that post-rt-fMRI-nf training, relative to the CG, the EG 

groups had increased RSFC in the PCC, a major hub within the DMN. Anxiety is thought to be 

associated with decreased functioning in DMN [8] that can effect emotional regulation and 

interactions with FPN during cognitive tasks and regulation [68]. Furthermore, recent fMRI 

studies have shown that worry, a cognitive component of trait anxiety [69], and mind 

wandering both involve the DMN [70], and that anxiety and worry are associated with altered 

DMN activation [7]. Whilst a range of functions have been ascribed to the PCC, Pearson and 

colleagues [71] propose a broader view of the PPC being a key node in the DMN for adapting 

behaviour in changing environments. In terms of attentional control, the PCC is described as 

a hub mediating interactions between the ACC and DLPFC. Moreover, the PCC has been 

implicated in attentional control and modulating the interaction between DMN and 

attentional control networks [72, 73]. A recent study to address the relationship between 

DMN activity and behavioural performance reports that the degree of connectedness of the 

PCC with other areas can predict performance during an attention task [73]. In line with this, 

Weissman and colleagues [25] have shown that less efficient stimulus processing during 

attentional lapses is characterized by less deactivation in the DMN, particularly the PCC. 

Failure to deactivate the PCC during attentional task may results in less efficient attentional 

control. Increased RSFC in this area, brought about by rt-fMRI-nf training, may facilitate more 

efficient interactions between DMN and attentional networks. 

In addition to rt-fMRI-nf related increases in functional connectivity and RSFC, we also 

observed reduced functional connectivity between the left DLPFC and a SMA (a region that 
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fell within the bilateral ACC ROI). Whilst the SMA is anatomically close to the ACC, it is a 

distinct area within a distinct RSFC network that is usually reported as being negatively 

associated with DLPFC activity [74], although more anterior parts of the dorsomedial cortex 

may be positively associated with DLPFC activity [75, 76]. Therefore, it is possible that 

increased DLPFC – ACC connectivity due to rt-fMRI-nf training, also resulted in a reduced 

functional connectivity between the DLPFC and SMA. Furthermore, reduced functional 

connectivity between the DLPFC seed region and a small area of the ACC was also associated 

with a reduction in anxiety levels. Whilst the reasons for this result are unclear it is likely that 

our ACC ROI contained functionally distinct areas of the medial cortex that may have 

responded differently to rt-fMRI-nf training. Some of the factors driving these effects may 

also be related to the descriptive observation that the neurofeedback signal did not 

consistently increase over the training runs.  

The time course of the neurofeedback signal increased over the first three runs before 

decreasing in the final run. The interpretation of these results is unclear; however, 

descriptively participants do not seem to have learned to up-regulate the neurofeedback 

signal over the four runs. Nevertheless, this measure does not consider the time course within 

each run or differences between EG and CG. Whilst it is unclear why the neurofeedback signal 

decreased at run 4, it is possible that 3 runs were sufficient to establish optimal functional 

connectivity in this network and that further training introduced noise and inefficiency into 

already learnt strategies. However, other outcome measures and their development over 

time after rt-fMRI-nf training must be considered in evaluating the optimal number of 

neurofeedback runs (i.e. [77]). 

Limitations 
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While our sample size is comparable to other rt-fMRI-nf studies in healthy populations (see 

[78, 79]), this study was only powered to detect medium to large effect sizes. Thus, however 

promising our results, they need to be interpreted with some caution and replication in a 

larger sample is needed. It should also be noted that two of the 30 study participants were 

left-handed and both were in the EG. It is not clear if and how laterality may have affected 

the results. Furthermore, it is important to acknowledge the possibility that some of the 

effects we observed may be due to the neurofeedback task rather than real self-regulation of 

brain connectivity between the ACC and DLPFC. Emmert and colleagues [78] report a distinct 

pattern of brain activation that is associated with attempts of self-regulation that is 

independent of target area and direction of regulation. Nevertheless, the randomised 

controlled nature of the study and the specificity of the effects suggest that our results are 

likely due to successful self-regulation. The CG was provided with yoked feedback, which 

controls for the experience of reward. However yoked feedback may not control for effects 

of veridical rt-fMRI-nf learning or any target specific effects. Therefore, any confounding 

effects of true rt-fMRI-nf learning or effects specific to the rt-fMRI-nf targets cannot be 

excluded [80, 81]. 

Using pre- and post-rt-fMRI-nf training resting-state scans further demonstrates that self-

regulation had effects on functional connectivity beyond the neurofeedback task. However, 

pre- and post-rt-fMRI-nf assessments were only one week apart and taken directly before and 

after rt-fMRI-nf training. Thus, the longevity of reduced anxiety brought about by rt-fMRI-nf 

training is unclear and it is possible that measured improvements may not have lasted for 

very long. The durability of this effect will need to be examined in future, larger trials.  

Conclusions 
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In conclusion, we have demonstrated the feasibility of using connectivity-based rt-fMRI-nf 

training (based on functional connectivity between left DLPFC and the ACC) to reduce anxiety 

levels and alter activation in wider networks. Rt-fMRI-nf training resulted in reduced anxiety 

levels and increased DLPFC-ACC functional connectivity (although some decreases were also 

observed) as well as increased RSFC in the DMN. Importantly, it was demonstrated that 

changes in functional connectivity between rt-fMRI-nf target regions were associated with 

reduced anxiety levels in the EG. Our findings could be interpreted as a pattern of increased 

efficiency in brain circuitry that is important for attentional control which, whilst not leading 

to measurable improvements in task effectiveness, did lead to reduced levels of anxiety. Here 

we provide a proof-of-concept but these results need to be replicated in larger samples and 

more work is needed to better understand the relationship between efficient processing in 

attentional control networks and anxiety. Rt-fMRI-nf training could also be used to target 

other brain networks and regions associated with attentional control. Future research is 

needed to further explore interactions between functional networks and how these translate 

to behavioural changes. 

Credit Autor Statement 

Elenor Morgenroth: Writing – Review & Editing, Investigation, Software, Visualization, 

Formal Analysis, Project Administration, Writing – Original Draft 

Francesca Saviola: Writing – Review & Editing, Formal Analysis 

James Gilleen: Writing – Review & Editing, Supervision 

Beth Allen: Writing – Review & Editing, Investigation 

Michael Luehrs: Writing - Review & Editing, Software 

Michael Eysenck: Writing – Review & Editing, Supervision 

Paul Allen: Conceptualization, Supervision, Writing – Review & Editing, Project 

Administration, Funding Acquisition, Formal Analysis, Writing – Original Draft 

 

                  



29 
 

Acknowledgements 

We would like to thank Ari Lingeswaran at the Combined Universities Brain Imaging Centre 

(CUBIC), Royal Holloway, University of London for MRI scanning and technical support, as well 

as all those who participated in the study.  

 

                  



30 
 

References 

 

1. Remes, O., et al., A systematic review of reviews on the prevalence of anxiety disorders in 
adult populations. Brain Behav. 6(7): p. e00497. 

2. Berggren, N. and N. Derakshan, Attentional control deficits in trait anxiety: why you see them 
and why you don't. Biol Psychol, 2013. 92(3): p. 440-6. 

3. Barker, H., et al., Worry is associated with inefficient functional activity and connectivity in 
prefrontal and cingulate cortices during emotional interference. Brain Behav, 2018. 8(12): p. 
e01137. 

4. Basten, U., C. Stelzel, and C.J. Fiebach, Trait anxiety modulates the neural efficiency of 
inhibitory control. J Cogn Neurosci, 2011. 23(10): p. 3132-45. 

5. Basten, U., C. Stelzel, and C.J. Fiebach, Trait anxiety and the neural efficiency of manipulation 
in working memory. Cogn Affect Behav Neurosci, 2012. 12(3): p. 571-88. 

6. Bishop, S.J., Trait anxiety and impoverished prefrontal control of attention. Nat Neurosci, 
2009. 12(1): p. 92-8. 

7. Servaas, M.N., et al., The neural correlates of worry in association with individual differences 
in neuroticism. Hum Brain Mapp, 2014. 35(9): p. 4303-15. 

8. Sylvester, C.M., et al., Functional network dysfunction in anxiety and anxiety disorders. 
Trends Neurosci, 2012. 35(9): p. 527-35. 

9. Allen, P., et al., Extrinsic and default mode networks in psychiatric conditions: Relationship to 
excitatory-inhibitory transmitter balance and early trauma. Neurosci Biobehav Rev, 2019. 99: 
p. 90-100. 

10. Eysenck, M.W., et al., Anxiety and cognitive performance: attentional control theory. 
Emotion, 2007. 7(2): p. 336-53. 

11. Eysenck, M.W. and M.G. Calvo, Anxiety and Performance - the Processing Efficiency Theory. 
Cognition & Emotion, 1992. 6(6): p. 409-434. 

12. Mathews, A., Why worry? The cognitive function of anxiety. Behav Res Ther, 1990. 28(6): p. 
455-68. 

13. McNally, R.J., Experimental approaches to cognitive abnormality in posttraumatic stress 
disorder. Clin Psychol Rev, 1998. 18(8): p. 971-82. 

14. Berggren, N. and N. Derakshan, Attentional control deficits in trait anxiety: why you see them 
and why you don't. Biol Psychol. 92(3): p. 440-6. 

15. Barker, H., et al., Worry is associated with inefficient functional activity and connectivity in 
prefrontal and cingulate cortices during emotional interference. Brain and Behavior, in press. 

16. Fales, C.L., et al., Anxiety and cognitive efficiency: differential modulation of transient and 
sustained neural activity during a working memory task. Cogn Affect Behav Neurosci, 2008. 
8(3): p. 239-53. 

17. Karch, S., et al., Influence of trait anxiety on inhibitory control in alcohol-dependent patients: 
simultaneous acquisition of ERPs and BOLD responses. J Psychiatr Res, 2008. 42(9): p. 734-
45. 

18. Comte, M., et al., Effect of trait anxiety on prefrontal control mechanisms during emotional 
conflict. Hum Brain Mapp, 2015. 36(6): p. 2207-14. 

19. Braver, T.S., et al., Flexible neural mechanisms of cognitive control within human prefrontal 
cortex. Proc Natl Acad Sci U S A, 2009. 106(18): p. 7351-6. 

20. Basten, U., C. Stelzel, and C.J. Fiebach, Trait anxiety modulates the neural efficiency of 
inhibitory control. J Cogn Neurosci. 23(10): p. 3132-45. 

                  



31 
 

21. Moran, T.P., et al., Sending mixed signals: worry is associated with enhanced initial error 
processing but reduced call for subsequent cognitive control. Soc Cogn Affect Neurosci. 
10(11): p. 1548-56. 

22. Menon, V., Large-Scale Functional Brain Organization in Brain Mapping: An Encyclopedic 
Reference, A.W. Toga, Editor. 2015, Elsevier: Academic Press: . p. 449-459. 

23. Fox, M.D., et al., The human brain is intrinsically organized into dynamic, anticorrelated 
functional networks. Proceedings of the National Academy of Sciences of the United States 
of America, 2005. 102(27): p. 9673-9678. 

24. Pletzer, B., et al., Mathematics anxiety reduces default mode network deactivation in 
response to numerical tasks. Front Hum Neurosci, 2015. 9: p. 202. 

25. Weissman, D.H., et al., The neural bases of momentary lapses in attention. Nat Neurosci, 
2006. 9(7): p. 971-8. 

26. Bar-Haim, Y., Research Review: attention bias modification (ABM): a novel treatment for 
anxiety disorders. Journal of Child Psychology and Psychiatry, 2010. 51(8): p. 859-870. 

27. Cristea, I.A., et al., Practitioner Review: Cognitive bias modification for mental health 
problems in children and adolescents: ameta-analysis. Journal of Child Psychology and 
Psychiatry, 2015. 56(7): p. 723-734. 

28. Linetzky, M., et al., Quantitative Evaluation of the Clinical Efficacy of Attention Bias 
Modification Treatment for Anxiety Disorders. Depression and Anxiety, 2015. 32(6): p. 383-
391. 

29. Caria, A., et al., Regulation of anterior insular cortex activity using real-time fMRI. 
Neuroimage, 2007. 35(3): p. 1238-1246. 

30. deCharms, R.C., et al., Control over brain activation and pain learned by using real-time 
functional MRI. Proceedings of the National Academy of Sciences of the United States of 
America, 2005. 102(51): p. 18626-18631. 

31. Sherwood, M.S., et al., Enhanced control of dorsolateral prefrontal cortex neurophysiology 
with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and 
working memory practice. Neuroimage, 2016. 124: p. 214-223. 

32. deCharms, R.C., et al., Control over brain activation and pain learned by using real-time 
functional MRI. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18626-31. 

33. Zilverstand, A., et al., fMRI neurofeedback facilitates anxiety regulation in females with 
spider phobia. Front Behav Neurosci, 2015. 9: p. 148. 

34. Koush, Y., et al., Connectivity-based neurofeedback: dynamic causal modeling for real-time 
fMRI. Neuroimage, 2013. 81: p. 422-430. 

35. Liew, S.L., et al., Improving Motor Corticothalamic Communication After Stroke Using Real-
Time fMRI Connectivity-Based Neurofeedback. Neurorehabil Neural Repair, 2016. 30(7): p. 
671-5. 

36. Megumi, F., et al., Functional MRI neurofeedback training on connectivity between two 
regions induces long-lasting changes in intrinsic functional network. Frontiers in Human 
Neuroscience, 2015. 9. 

37. Zotev, V., et al., Real-time fMRI neurofeedback training of the amygdala activity with 
simultaneous EEG in veterans with combat-related PTSD. Neuroimage Clin, 2018. 19: p. 106-
121. 

38. Gerin, M.I., et al., Real-Time fMRI Neurofeedback with War Veterans with Chronic PTSD: A 
Feasibility Study. Front Psychiatry, 2016. 7: p. 111. 

39. Scheinost, D., et al., Orbitofrontal cortex neurofeedback produces lasting changes in 
contamination anxiety and resting-state connectivity. Transl Psychiatry, 2013. 3: p. e250. 

40. Paret, C., et al., fMRI neurofeedback of amygdala response to aversive stimuli enhances 
prefrontal-limbic brain connectivity. Neuroimage, 2016. 125: p. 182-188. 

41. Zhao, Z., et al., Real-Time Functional Connectivity-Informed Neurofeedback of Amygdala-
Frontal Pathways Reduces Anxiety. Psychother Psychosom, 2019: p. 1-11. 

                  



32 
 

42. Spielberger, C.D., et al., Manual for the State-Trait Anxiety Inverntory, C.P. Press, Editor. 
1983: Palo Alto, CA. 

43. Nelson, H.E.W., J.R., The Revised National Adult Reading Test–Test manual, NFER-Nelson, 
Editor. 1991: Windsor, UK. 

44. Bright, P., et al., The National Adult Reading Test: restandardisation against the Wechsler 
Adult Intelligence ScaleFourth edition. Neuropsychological Rehabilitation, 2018. 28(6): p. 
1019-1027. 

45. Lovibond, P.F. and S.H. Lovibond, The Structure of Negative Emotional States - Comparison 
of the Depression Anxiety Stress Scales (Dass) with the Beck Depression and Anxiety 
Inventories. Behaviour Research and Therapy, 1995. 33(3): p. 335-343. 

46. Page, A.C., G.R. Hooke, and D.L. Morrison, Psychometric properties of the Depression Anxiety 
Stress Scales (DASS) in depressed clinical samples. Br J Clin Psychol, 2007. 46(Pt 3): p. 283-97. 

47. Crawford, J.R. and J.D. Henry, The Depression Anxiety Stress Scales (DASS): normative data 
and latent structure in a large non-clinical sample. Br J Clin Psychol, 2003. 42(Pt 2): p. 111-
31. 

48. Stroop, J.R., Studies of Interference in Serial Verbal Reactions (Reprinted from Journal 
Experimental-Psychology, Vol 18, Pg 643-662, 1935). Journal of Experimental Psychology-
General, 1992. 121(1): p. 15-23. 

49. Silton, R.L., et al., The time course of activity in dorsolateral prefrontal cortex and anterior 
cingulate cortex during top-down attentional control. Neuroimage, 2010. 50(3): p. 1292-302. 

50. Sulzer, J., et al., Real-time fMRI neurofeedback: Progress and challenges. Neuroimage, 2013. 
76(1): p. 386-399. 

51. Jenkinson, M. and S. Smith, A global optimisation method for robust affine registration of 
brain images. Med Image Anal, 2001. 5(2): p. 143-56. 

52. Jenkinson, M., et al., Improved optimization for the robust and accurate linear registration 
and motion correction of brain images. Neuroimage, 2002. 17(2): p. 825-41. 

53. Andersson, J.L.R., M. Jenkinson, and S.M. Smith, Non-linear optimisation. FMRIB technical 
report, 2007. TR07JA1. 

54. Andersson, J.L.R., M. Jenkinson, and S.M. Smith, Non-linear registration, aka Spatial 
normalisation. FMRIB technical report, 2007. TR07JA2. 

55. Smith, S.M., Fast robust automated brain extraction. Hum Brain Mapp, 2002. 17(3): p. 143-
55. 

56. Woolrich, M.W., et al., Temporal autocorrelation in univariate linear modeling of FMRI data. 
Neuroimage, 2001. 14(6): p. 1370-86. 

57. Beckmann, C.F., et al., Group comparison of resting-state FMRI data using multi-subject ICA 
and dual regression. OHBM, 2009. 

58. Griffanti, L., et al., Hand classification of fMRI ICA noise components. Neuroimage, 2017. 154: 
p. 188-205. 

59. Zhang, Y., M. Brady, and S. Smith, Segmentation of brain MR images through a hidden 
Markov random field model and the expectation-maximization algorithm. IEEE Trans Med 
Imaging, 2001. 20(1): p. 45-57. 

60. Sacchet, M.D., et al., Large-Scale Hypoconnectivity Between Resting-State Functional 
Networks in Unmedicated Adolescent Major Depressive Disorder. 
Neuropsychopharmacology, 2016. 41(12): p. 2951-2960. 

61. Yeo, B.T., et al., The organization of the human cerebral cortex estimated by intrinsic 
functional connectivity. J Neurophysiol, 2011. 106(3): p. 1125-65. 

62. Filippini, N., et al., Distinct patterns of brain activity in young carriers of the APOE-epsilon4 
allele. Proc Natl Acad Sci U S A, 2009. 106(17): p. 7209-14. 

63. Smith, S.M. and T.E. Nichols, Threshold-free cluster enhancement: Addressing problems of 
smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 2009. 
44(1): p. 83-98. 

                  



33 
 

64. Moran, T.P., et al., Sending mixed signals: worry is associated with enhanced initial error 
processing but reduced call for subsequent cognitive control. Soc Cogn Affect Neurosci, 2015. 
10(11): p. 1548-56. 

65. Morgenroth, E., et al., Altered relationship between prefrontal glutamate and activation 
during cognitive control in people with high trait anxiety. Cortex, 2019. 117: p. 53-63. 

66. Chiong, W., et al., The salience network causally influences default mode network activity 
during moral reasoning. Brain, 2013. 136(Pt 6): p. 1929-41. 

67. Goulden, N., et al., The salience network is responsible for switching between the default 
mode network and the central executive network: replication from DCM. Neuroimage, 2014. 
99: p. 180-90. 

68. Delgado, M.R., et al., Neural circuitry underlying the regulation of conditioned fear and its 
relation to extinction. Neuron, 2008. 59(5): p. 829-38. 

69. Gros, D.F., et al., Psychometric properties of the State-Trait Inventory for Cognitive and 
Somatic Anxiety (STICSA): Comparison to the State-Trait Anxiety Inventory (STAI). 
Psychological Assessment, 2007. 19(4): p. 369-381. 

70. Fox, K.C., et al., The wandering brain: meta-analysis of functional neuroimaging studies of 
mind-wandering and related spontaneous thought processes. Neuroimage, 2015. 111: p. 
611-21. 

71. Pearson, J.M., et al., Posterior cingulate cortex: adapting behavior to a changing world. 
Trends Cogn Sci, 2011. 15(4): p. 143-51. 

72. Leech, R., et al., Fractionating the default mode network: distinct contributions of the ventral 
and dorsal posterior cingulate cortex to cognitive control. J Neurosci, 2011. 31(9): p. 3217-24. 

73. Lin, P., et al., Static and dynamic posterior cingulate cortex nodal topology of default mode 
network predicts attention task performance. Brain Imaging Behav, 2016. 10(1): p. 212-25. 

74. Zhang, S., J.S. Ide, and C.S. Li, Resting-state functional connectivity of the medial superior 
frontal cortex. Cereb Cortex, 2012. 22(1): p. 99-111. 

75. Margulies, D.S., et al., Mapping the functional connectivity of anterior cingulate cortex. 
Neuroimage, 2007. 37(2): p. 579-88. 

76. Kim, J.H., et al., Defining functional SMA and pre-SMA subregions in human MFC using 
resting state fMRI: functional connectivity-based parcellation method. Neuroimage, 2010. 
49(3): p. 2375-86. 

77. Rance, M., et al., Time course of clinical change following neurofeedback. Neuroimage, 2018. 
181: p. 807-813. 

78. Emmert, K., et al., Meta-analysis of real-time fMRI neurofeedback studies using individual 
participant data: How is brain regulation mediated? Neuroimage, 2016. 124(Pt A): p. 806-
812. 

79. Thibault, R.T., et al., Neurofeedback with fMRI: A critical systematic review. Neuroimage, 
2018. 172: p. 786-807. 

80. Lubianiker, N., et al., Process-based framework for precise neuromodulation. Nat Hum 
Behav, 2019. 3(5): p. 436-445. 

81. Sorger, B., et al., Control freaks: Towards optimal selection of control conditions for fMRI 
neurofeedback studies. Neuroimage, 2019. 186: p. 256-265. 

  

                  



34 
 

FIGURES  

Figure 1. (A) Study design. (B) Example of visual gauge presented to participants during rt-fMRI-nf 

training. (C) Combined binary ROI across all subjects in the bilateral ACC and left DLPFC registered to 

standard MNI template. 
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Figure 2. (A) Mean DASS Anxiety scores by time-

point and group, error bars show 95% confidence 

interval. (B) Time course of neurofeedback signal 

over training runs in percent change relative to 

functional localizer. 
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Figure 3. PPI analysis using left DLPFC seed region (purple) showing increased (red) and decreased 

(blue) functional connectivity in bilateral ACC ROI. Bar graphs show z-values from peak voxels 

separated by EG and CG. Results are Z-maps displayed at a threshold of p < .05 uncorrected for 

illustrative purposes.  
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Figure 4. Regression between PPI estimate of changes in functional connectivity between left DLPFC seed 

region and bilateral ACC ROI and changes in DASS Anxiety scores over rt-fMRI-nf training in the EG. Brain map 

shows positively (red) and negatively associated areas (blue). Results are Z-maps displayed at a threshold of p 

< .05 uncorrected for illustrative purposes. Scatter plot showing association between changes in DASS anxiety 

scores (Post – Pre training) and extracted PPI parameters from peak voxels in the ACC (based on 6 mm 

sphere). 

*A sphere of 4 mm was used to extract the parameters for this plot, as a 6 mm sphere had overlap with 

significant results in the opposite direction. 
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Figure 5. (A) Z-map for selected component based on group 

ICA analysis showing RSFC in CON, FPN and DMN regions 

(thresholded at ∣Z∣>2.5). (B) Increased RSFC in EG pre vs. 

post-rt-fMRI-nf training in the PCC (p-map, FWE corrected).  

                  


