19 research outputs found

    Modeling, system identication, and control for dynamic locomotion of the LittleDog robot on rough terrain

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 76-80).In this thesis, I present a framework for achieving a stable bounding gait on the LittleDog robot over rough terrain. The framework relies on an accurate planar model of the dynamics, which I assembled from a model of the motors, a rigid body model, and a novel physically-inspired ground interaction model, and then identied using a series of physical measurements and experiments. I then used the RG-RRT algorithm on the model to generate bounding trajectories of LittleDog over a number of sets of rough terrain in simulation. Despite signicant research in the field, there has been little success in combining motion planning and feedback control for a problem that is as kinematically and dynamically challenging as LittleDog. I have constructed a controller based on transverse linearization and used it to stabilize the planned LittleDog trajectories in simulation. The resulting controller reliably stabilized the planned bounding motions and was relatively robust to signicant amounts of time delays in estimation, process and estimation noise, as well as small model errors. In order to estimate the state of the system in real time, I modified the EKF algorithm to compensate for varying delays between the sensors. The EKF-based filter works reasonably well, but when combined with feedback control, simulated delays, and the model it produces unstable behavior, which I was not able to correct. However, the close loop simulation closely resembles the behavior of the control and estimation on the real robot, including the failure modes, which suggests that improving the feedback loop might result in bounding on the real LittleDog. The control framework and many of the methods developed in this thesis are applicable to other walking systems, particularly when operating in the underactuated regime.by Michael Yurievich Levashov.S.M

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    No full text
    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of that study, we used a CMM (Coordinate Measuring Machine) instead of the FARO arm for measuring the tooling balls. In addition, a roller cam positioner system replaced the optical movers for moving the quadrupole. With the exception of the quadrupole itself, the system was identical to what will be used in fiducializing the undulator quadrupoles. In this study, we investigate the new vibrating wire set up, including the error associated with each step of fiducialization. A vibrating wire system was constructed to fiducialize the quadrupoles between undulator segments in the LCLS. This note is a continuation of previous work to study the ability of the system to fulfill the fiducialization requirements

    Modeling Evaporation of Water Droplets as Applied to Survival of Airborne Viruses

    No full text
    Many viruses, such as coronaviruses, tend to spread airborne inside water microdroplets. Evaporation of the microdroplets may result in a reduction of their contagiousness. However, the evaporation of small droplets is a complex process involving mass and heat transfer, diffusion, convection and solar radiation absorption. Virological studies indicate that airborne virus survival is very sensitive to air humidity and temperature. We employ a model of droplet evaporation with the account for the Knudsen layer. This model suggests that evaporation is sensitive to both temperature and the relative humidity (RH) of the ambient air. We also discuss various mechanisms such as the effect of solar irradiation, the dynamic relaxation of moving droplets in ambient air and the gravitational sedimentation of the droplets. The maximum estimate for the spectral radiative flux in the case of cloudless sky showed that the radiation contribution to evaporation of single water droplets is insignificant. We conclude that at small and even at moderately high levels of RH, microdroplets evaporate within dozens of seconds with the convective heat flux from the air being the dominant mechanism in every case. The numerical results obtained in the paper are in good qualitative agreement with both the published laboratory experiments and seasonal nature of many viral infections. Sophisticated experimental techniques may be needed for in situ observation of interaction of viruses with organic particles and living cells within microdroplets. The novel controlled droplet cluster technology is suggested as a promising candidate for such experimental methodology
    corecore