356 research outputs found

    Finite difference simulation ofphasetransformation kinetics in transition metal carbide composites

    Get PDF
    Please click Additional Files below to see the full abstract

    A tale of two toolkits, report the third: on the usage and performance of HIVE-COTE v1.0

    Full text link
    The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) is a heterogeneous meta ensemble for time series classification. Since it was first proposed in 2016, the algorithm has undergone some minor changes and there is now a configurable, scalable and easy to use version available in two open source repositories. We present an overview of the latest stable HIVE-COTE, version 1.0, and describe how it differs to the original. We provide a walkthrough guide of how to use the classifier, and conduct extensive experimental evaluation of its predictive performance and resource usage. We compare the performance of HIVE-COTE to three recently proposed algorithms

    Phase evolution in thermally annealed metallic-UHTC composites

    Get PDF
    Please click Additional Files below to see the full abstrac

    Circulation and water mass transformation in a model of the Chukchi Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05025, doi:10.1029/2005JC003364.The circulation and water mass transformation in a regional ocean-ice model of the Chukchi Sea are discussed. The model has horizontal resolution of O(4 km), is forced by fluxes derived from daily NCEP reanalysis fields, and has seasonally varying transport, temperature, and salinity imposed at Bering Strait. Many of the observed characteristics of the mean circulation and seasonal cycle in the Chukchi Sea are reproduced. The discussion focuses on: the branching of the inflow transport into pathways following Herald Canyon, Central Channel, and the Alaskan coast; the pattern of ice melt; and the water mass transformation and formation of winter water and hypersaline water. The ice melt pattern and timing is strongly influenced by advection through Bering Strait. High frequency forcing results in a larger region of ice melt, particularly over the shoals and in the northern Chukchi Sea, compared to monthly mean forcing. In the model, the seasonal cycle of salinity in the southern and central Chukchi Sea is dominated by advection through Bering Strait, while local atmospheric forcing and brine rejection are more important north of Herald and Hanna Shoals and in Barrow Canyon. However, since the residence time in the Chukchi Sea is generally less than 1 year, interannual variability in the Bering Strait salinity will be reflected in the salinity across the Chukchi Sea and at Barrow Canyon.This material is based upon work supported by the National Science Foundation Office of Polar Programs under grant 0421904

    The Contract Random Interval Spectral Ensemble (c-RISE): The Effect of Contracting a Classifier on Accuracy

    Get PDF
    The Random Interval Spectral Ensemble (RISE) is a recently introduced tree based time series classification algorithm, in which each tree is built on a distinct set of Fourier, autocorrelation and partial autocorrelation features. It is a component in the meta ensemble HIVE-COTE [9]. RISE has run time complexity of O(nm2)O(nm2), where m is the series length and n the number of train cases. This is prohibitively slow when considering long series, which are common in problems such as audio classification, where spectral approaches are likely to perform better than classifiers built in the time domain. We propose an enhancement of RISE that allows the user to specify how long the algorithm can have to run. The contract RISE (c-RISE) allows for check-pointing and adaptively estimates the time taken to build each tree in the ensemble through learning the constant terms in the run time complexity function. We show how the dynamic approach to contracting is more effective than the static approach of estimating the complexity before executing, and investigate the effect of contracting on accuracy for a range of large problems

    Dynamics of Charcoal Alteration in a Tropical Biome: A Biochar-Based Study

    Get PDF
    Pyrogenic carbon (PyC) is a polyaromatic residue of the incomplete combustion of biomass or fossil fuels. There is a growing recognition that PyC forms an important part of carbon budgets, due to production rates of 116–385 Tg C yr, and the size and ubiquity of PyC stocks in global carbon reservoirs. At least a proportion of PyC exists in a highly recalcitrant chemical form, raising the prospect of long-term carbon sequestration through soil amendment with “biochar,” which is generally produced with the aim of making a particularly recalcitrant form of PyC. However, there is growing evidence that some PyC, including biochar, can be both physically and chemically altered and degraded upon exposure to the environment over annual timescales, yet there is a lack of information concerning the mechanisms and determining factors of degradation. Here, we investigate three main factors; production temperature, feedstock composition, and the characteristics of the environment to which the material is exposed (e.g., pH, organic matter composition, oxygen availability) by analysis of biochar samples in a litterbag experiment before and after a year-long field study in the tropical rainforests of northeast Australia. We find that non-lignocellulosic feedstock has lower aromaticity, plus lower O/C and H/C ratios for a given temperature, and consequently lower carbon sequestration potential. The rate at which samples are altered is production temperature-dependant; however even in the highest temperature samples loss of the semi-labile aromatic carbon component is observed over 1 year. The results of 13C-MAS-NMR measurements suggest that direct oxygenation of aromatic structures may be even more important than carboxylation in environmental alteration of biochar (as a subset of PyC). There is a clear effect of depositional environment on biochar alteration even after the relatively short timescale of this study, as changes are most extensive in the most oxygenated material that was exposed on the soil surface. This is most likely the result of mineral ingress and colonization by soil microbiota. Consequently, oxygen availability and physical or chemical protection from sunlight and/or rainwater is vital in determining the alteration trajectory of this material
    • …
    corecore