132 research outputs found

    Continuum reverberation mapping of Mrk 876 over three years with remote robotic observatories

    Get PDF
    Funding: Research at UC Irvine is supported by NSF grant AST-1907290. HL acknowledges a Daphne Jackson Fellowship sponsored by the Science and Technology Facilities Council (STFC), UK. ERC acknowledges support by the NRF of South Africa. TT acknowledges support from NSF through grant NSF-AST-1907208.Continuum reverberation mapping probes the sizescale of the optical continuum-emitting region in active galactic nuclei (AGN). Through 3 years of multiwavelength photometric monitoring in the optical with robotic observatories, we perform continuum reverberation mapping on Mrk~876. All wavebands show large amplitude variability and are well correlated. Slow variations in the light curves broaden the cross-correlation function (CCF) significantly, requiring detrending in order to robustly recover interband lags. We measure consistent interband lags using three techniques (CCF, JAVELIN, PyROA), with a lag of around 13~days from u to z. These lags are longer than the expected radius of 12~days for the self-gravitating radius of the disk. The lags increase with wavelength roughly following λ4/3, as would be expected from thin disk theory, but the lag normalization is approximately a factor of 3 longer than expected, as has also been observed in other AGN. The lag in the i band shows an excess which we attribute to variable Hα broad-line emission. A flux-flux analysis shows a variable spectrum that follows fν ∝ λ-1/3 as expected for a disk, and an excess in the i band that also points to strong variable Hα emission in that band.Publisher PDFPeer reviewe

    A complex dust morphology in the high-luminosity AGN Mrk 876

    Full text link
    Recent models for the inner structure of active galactic nuclei (AGN) advocate the presence of a radiatively accelerated, dusty outflow launched from the outer regions of the accretion disk. Here we present the first near-infrared (near-IR) variable (rms) spectrum for the high-luminosity, nearby AGN Mrk 876. We find that it tracks the accretion disk spectrum out to longer wavelengths than the mean spectrum due to a reduced dust emission. The implied outer accretion disk radius is consistent with the infrared results predicted by a contemporaneous optical accretion disk reverberation mapping campaign and much larger than the self-gravity radius. The reduced flux variability of the hot dust could be either due to the presence of a secondary, constant dust component in the mean spectrum or introduced by the destructive superposition of the dust and accretion disk variability signals or some combination of both. Assuming thermal equilibrium for optically thin dust, we derive the luminosity-based dust radius for different grain properties using our measurement of the temperature. We find that in all cases considered the values are significantly larger than the dust response time measured by IR photometric monitoring campaigns, with the least discrepancy present relative to the result for a wavelength-independent dust emissivity law, i.e. a blackbody, which is appropriate for large grain sizes. This result can be well explained by assuming a flared, disk-like structure for the hot dust.Comment: 18 pages, 7 figures; accepted to Ap

    Very-high-energy gamma-ray emission from high-redshift blazars

    Full text link
    We study the possible detection of and properties of very high-energy (VHE) gamma-ray emission (in the energy band above 100 GeV) from high redshift sources. We report on the detection of VHE gamma-ray flux from blazars with redshifts z>0.5. We use the data of Fermi telescope in the energy band above 100 GeV and identify significant sources via cross-correlation of arrival directions of individual VHE gamma-rays with the positions of known Fermi sources. There are thirteen high-redshift sources detected in the VHE band by Fermi/LAT telescope. The present statistics of the Fermi signal from these sources is too low for a sensible study of the effects of suppression of the VHE flux by pair production through interactions with Extragalactic Background Light photons. We find that the detection of these sources with ground-based gamma-ray telescopes would be challenging. However, several sources including BL Lacs PKS 0426-380 at z=1.11, KUV 00311-1938 at z=0.61, B3 1307+433 at z=0.69, PG 1246+586 at z=0.84, Ton 116 at z=1.065 as well as a flat-spectrum radio quasar 4C +55.17 at z=0.89 should be detectable by HESS-II, MAGIC-II and CTA. A high-statistics study of a much larger number of VHE gamma-ray sources at cosmological distances would be possible with the proposed high-altitude Cherenkov telescope [email protected]: 10 pages, 14 figure

    AGN STORM 2: V. Anomalous Behavior of the CIV Light Curve in Mrk 817

    Full text link
    An intensive reverberation mapping campaign on the Seyfert 1 galaxy Mrk817 using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) revealed significant variations in the response of the broad UV emission lines to fluctuations in the continuum emission. The response of the prominent UV emission lines changes over a \sim60-day duration, resulting in distinctly different time lags in the various segments of the light curve over the 14 months observing campaign. One-dimensional echo-mapping models fit these variations if a slowly varying background is included for each emission line. These variations are more evident in the CIV light curve, which is the line least affected by intrinsic absorption in Mrk817 and least blended with neighboring emission lines. We identify five temporal windows with distinct emission line response, and measure their corresponding time delays, which range from 2 to 13 days. These temporal windows are plausibly linked to changes in the UV and X-ray obscuration occurring during these same intervals. The shortest time lags occur during periods with diminishing obscuration, whereas the longest lags occur during periods with rising obscuration. We propose that the obscuring outflow shields the ultraviolet broad lines from the ionizing continuum. The resulting change in the spectral energy distribution of the ionizing continuum, as seen by clouds at a range of distances from the nucleus, is responsible for the changes in the line response.Comment: 20 pages, 8 figures, submitted to Ap

    AGN STORM 2. I. First results: A Change in the Weather of Mrk 817

    Get PDF
    We present the first results from the ongoing, intensive, multiwavelength monitoring program of the luminous Seyfert 1 galaxy Mrk 817. While this active galactic nucleus was, in part, selected for its historically unobscured nature, we discovered that the X-ray spectrum is highly absorbed, and there are new blueshifted, broad, and narrow UV absorption lines, which suggest that a dust-free, ionized obscurer located at the inner broad-line region partially covers the central source. Despite the obscuration, we measure UV and optical continuum reverberation lags consistent with a centrally illuminated Shakura–Sunyaev thin accretion disk, and measure reverberation lags associated with the optical broad-line region, as expected. However, in the first 55 days of the campaign, when the obscuration was becoming most extreme, we observe a de-coupling of the UV continuum and the UV broad emission-line variability. The correlation recovered in the next 42 days of the campaign, as Mrk 817 entered a less obscured state. The short C IV and Lyα lags suggest that the accretion disk extends beyond the UV broad-line region. Unified

    AGN STORM 2. IV. Swift X-ray and ultraviolet/optical monitoring of Mrk 817

    Full text link
    The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble UV continuum light curves, we measure interband continuum lags, τ(λ)\tau(\lambda), that increase with increasing wavelength roughly following τ(λ)λ4/3\tau(\lambda) \propto \lambda^{4/3}, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve - the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad line region gas that sees an absorbed ionizing continuum.Comment: 20 pages, 13 figures, 3 tables, accepted for publication in Ap
    corecore