27 research outputs found
IL-4 receptor alpha signaling through macrophages differentially regulates liver fibrosis progression and reversal
Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause ofworldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal. However, the signals that determine fibrogenic vs fibrolytic macrophage function remain ill defined. We studied the role of interleukin-4 receptor α (IL-4Rα), a potential central switch of macrophage polarization, in liver fibrosis progression and reversal. We demonstrate that inflammatory monocyte infiltration and liver fibrogenesis were suppressed in general IL-4Rα−/− aswell as in macrophage-specific IL-4Rα−/− (IL-4RαΔLysM) mice. However,with deletion of IL-4RαΔLysM spontaneous fibrosis reversal was retarded. Results were replicated by pharmacological intervention using IL-4Rα-specific antisense oligonucleotides. Retarded resolution was linked to the loss of M2-type resident macrophages, which secreted MMP-12 through IL-4 and IL-13-mediated phospho-STAT6 activation. We conclude that IL-4Rα signaling regulates macrophage functional polarization in a context-dependent manner. Pharmacological targeting of macrophage polarization therefore requires disease stage-specific treatment strategies.
Research in Context: Alternative (M2-type) macrophage activation through IL-4Rα promotes liver Inflammation and fibrosis progression but speeds up fibrosis reversal. This demonstrates context dependent, opposing roles of M2-type macrophages. During reversal IL-4Rα induces fibrolytic MMPs, especially MMP-12, through STAT6. Liver-specific antisense oligonucleotides efficiently block IL-4Rα expression and attenuate fibrosis progression
In vivo reduction of hepatitis B virus antigenemia and viremia by antisense oligonucleotides
[Background & Aims]: Current treatment of chronic hepatitis B virus infection (CHB) includes interferon and nucleos(t)ide analogues, which generally do not reduce HBV surface antigen (HBsAg) production, a constellation that is associated with poor prognosis of CHB. Here we evaluated the efficacy of an antisense approach using antisense oligonucleotide (ASO) technology already in clinical use for liver targeted therapy to specifically inhibit HBsAg production and viremia in a preclinical setting.[Methods]: A lead ASO was identified and characterized in vitro and subsequently tested for efficacy in vivo and in vitro using HBV transgenic and hydrodynamic transfection mouse and a cell culture HBV infection model, respectively.[Results]: ASO treatment decreased serum HBsAg levels ⩾2 logs in a dose and time-dependent manner; HBsAg decreased 2 logs in a week and returned to baseline 4 weeks after a single ASO injection. ASO treatment effectively reduced HBsAg in combination with entecavir, while the nucleoside analogue alone did not. ASO treatment has pan-genotypic antiviral activity in the hydrodynamic transfection system. Finally, cccDNA-driven HBV gene expression is ASO sensitive in HBV infected cells in vitro.
Conclusion
Our results demonstrate in a preclinical setting the efficacy of an antisense approach against HBV by efficiently reducing serum HBsAg (as well as viremia) across different genotypes alone or in combination with standard nucleoside therapy. Since the applied antisense technology is already in clinical use, a lead compound can be rapidly validated in a clinical setting and thus, constitutes a novel therapeutic approach targeting chronic HBV infection.[Conclusion]: Our results demonstrate in a preclinical setting the efficacy of an antisense approach against HBV by efficiently reducing serum HBsAg (as well as viremia) across different genotypes alone or in combination with standard nucleoside therapy. Since the applied antisense technology is already in clinical use, a lead compound can be rapidly validated in a clinical setting and thus, constitutes a novel therapeutic approach targeting chronic HBV infection.Peer reviewe
Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.
Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders
Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration
PURPOSE: To preserve photoreceptor cell structure and function in a rodent model of retinitis pigmentosa with P23H rhodopsin by selective inhibition of the mutant rhodopsin allele using a second generation antisense oligonucleotide (ASO). METHODS: Wild-type mice and rats were treated with ASO by intravitreal (IVT) injection and rhodopsin mRNA and protein expression were measured. Transgenic rats expressing the murine P23H rhodopsin gene (P23H transgenic rat Line 1) were administered either a mouse-specific P23H ASO or a control ASO. The contralateral eye was injected with PBS and used as a comparator control. Electroretinography (ERG) measurements and analyses of the retinal outer nuclear layer were conducted and correlated with rhodopsin mRNA levels. RESULTS: Rhodopsin mRNA and protein expression was reduced after a single ASO injection in wild-type mice with a rhodopsin-specific ASO. Transgenic rat eyes that express a murine P23H rhodopsin gene injected with a murine P23H ASO had a 181 ± 39% better maximum amplitude response (scotopic a-wave) as compared with contralateral PBS-injected eyes; the response in control ASO eyes was not significantly different from comparator contralateral eyes. Morphometric analysis of the outer nuclear layer showed a significantly thicker nuclear layer in eyes injected with murine P23H ASO (18%) versus contralateral PBS-injected eyes. CONCLUSIONS: Allele-specific ASO-mediated knockdown of mutant P23H rhodopsin expression slowed the rate of photoreceptor degeneration and preserved the function of photoreceptor cells in eyes of the P23H rhodopsin transgenic rat. Our data indicate that ASO treatment is a potentially effective therapy for the treatment of retinitis pigmentosa
Recommended from our members
Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell DegenerationAllele-Specific Inhibition of Rhodopsin for adRP
PurposeTo preserve photoreceptor cell structure and function in a rodent model of retinitis pigmentosa with P23H rhodopsin by selective inhibition of the mutant rhodopsin allele using a second generation antisense oligonucleotide (ASO).MethodsWild-type mice and rats were treated with ASO by intravitreal (IVT) injection and rhodopsin mRNA and protein expression were measured. Transgenic rats expressing the murine P23H rhodopsin gene (P23H transgenic rat Line 1) were administered either a mouse-specific P23H ASO or a control ASO. The contralateral eye was injected with PBS and used as a comparator control. Electroretinography (ERG) measurements and analyses of the retinal outer nuclear layer were conducted and correlated with rhodopsin mRNA levels.ResultsRhodopsin mRNA and protein expression was reduced after a single ASO injection in wild-type mice with a rhodopsin-specific ASO. Transgenic rat eyes that express a murine P23H rhodopsin gene injected with a murine P23H ASO had a 181 ± 39% better maximum amplitude response (scotopic a-wave) as compared with contralateral PBS-injected eyes; the response in control ASO eyes was not significantly different from comparator contralateral eyes. Morphometric analysis of the outer nuclear layer showed a significantly thicker nuclear layer in eyes injected with murine P23H ASO (18%) versus contralateral PBS-injected eyes.ConclusionsAllele-specific ASO-mediated knockdown of mutant P23H rhodopsin expression slowed the rate of photoreceptor degeneration and preserved the function of photoreceptor cells in eyes of the P23H rhodopsin transgenic rat. Our data indicate that ASO treatment is a potentially effective therapy for the treatment of retinitis pigmentosa
FGF19 increased metabolic rate in vivo and fatty acid oxidation in hepatocytes in vitro.
<p>Welchol-feeding reduced plasma FGF15 levels in DIO mice treated with or without FGFR4 ASO (n = 8–9/group; A). Subcutaneous infusion of recombinant FGF19 to mice at 100 ng/kg/day raised the plasma FGF19 levels similar to the FGF15 levels observed in FGFR4 ASO treated mice, which was diminished 3 days post-infusion (n = 8/group; B). Neither whole body VO<sub>2</sub> nor heart production rate showed difference between two groups before infusion (C). The infusion of FGF19 caused increases in both VO<sub>2</sub> (D) and heat production rate (E) as compared to the pre-infusion baseline values, which were diminished with the termination of infusion. (F) FGF19 also increased fatty acid oxidation rate in <i>in vitro</i> mouse primary hepatocytes when they were treated with vehicle, 1.0 mM AICAR (as a positive control) or 0.5 ng/ml FGF19 (n = 5/group). Data are expressed as mean ± SEM. *<i>P</i><0.05 and **<i>P</i><0.01 vs. saline group.</p
Summary of the design on the pharmacological studies in DIO mice.
<p>Summary of the design on the pharmacological studies in DIO mice.</p