14 research outputs found

    Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction

    No full text
    This is a major publication, and my first in any of the Nature line of journals. It represents an extensive investigation involving four labs throughout the US and Canada (including mine!). It illustrates sex differences in neurochemical mediation of stress induced analgesia in humans and animals, and shows similarity in mechanism across species. --author-supplied descriptio

    Mogil, “Patterns of pain: meta-analysis of microarray studies of pain

    No full text
    a b s t r a c t Existing microarray gene expression profiling studies of tonic/chronic pain were subjected to meta-analysis to identify genes found to be regulated by these pain states in multiple, independent experiments. Twenty studies published from 2002 to 2008 were identified, describing the statistically significant regulation of 2254 genes. Of those, a total of 79 genes were found to be statistically significant ''hits'' in 4 or more independent microarray experiments, corresponding to a conservative P < 0.01 overall. Gene ontology-based functional annotation clustering analyses revealed strong evidence for regulation of immunerelated genes in pain states. A multi-gene quantitative real-time polymerase chain reaction experiment was run on dorsal root ganglion (DRG) and spinal cord tissue from rats and mice given nerve (sciatic chronic constriction; CCI) or inflammatory (complete Freund's adjuvant) injury. We independently confirmed the regulation of 43 of these genes in the rat-CCI-DRG condition; the genetic correlates in all other conditions were largely and, in some cases, strikingly, independent. However, a handful of genes were identified whose regulation bridged etiology, anatomical locus, and/or species. Most notable among these were Reg3b (regenerating islet-derived 3 beta; pancreatitis-associated protein) and Ccl2 (chemokine [C-C motif] ligand 2), which were significantly upregulated in every condition in the rat.

    Monoclonal antibodies against GFRα3 are efficacious against evoked hyperalgesic and allodynic responses in mouse join pain models but, one of these, REGN5069, was not effective against pain in a randomized, placebo-controlled clinical trial in patients with osteoarthritis pain

    No full text
    The artemin-GFRα3 signaling pathway has been implicated in various painful conditions including migraine, cold allodynia, hyperalgesia, inflammatory bone pain, and mouse knees contain GFRα3-immunoreactive nerve endings. We developed high affinity mouse (REGN1967) and human (REGN5069) GFRα3-blocking monoclonal antibodies and, following in vivo evaluations in mouse models of chronic joint pain (osteoarthritic-like and inflammatory), conducted a first-in-human phase 1 pharmacokinetics (PK) and safety trial of REGN5069 (NCT03645746) in healthy volunteers, and a phase 2 randomized placebo-controlled efficacy and safety trial of REGN5069 (NCT03956550) in patients with knee osteoarthritis (OA) pain. In three commonly used mouse models of chronic joint pain (destabilization of the medial meniscus, intra-articular monoiodoacetate, or Complete Freund’s Adjuvant), REGN1967 and REGN5069 attenuated evoked behaviors including tactile allodynia and thermal hyperalgesia without discernably impacting joint pathology or inflammation, prompting us to further evaluate REGN5069 in humans. In the phase 1 study in healthy subjects, the safety profiles of single doses of REGN5069 up to 3000 mg (intravenous) or 600 mg (subcutaneous) were comparable to placebo; PK were consistent with a monoclonal antibody exhibiting target-mediated disposition. In the phase 2 study in patients with OA knee pain, two doses of REGN5069 (100 mg or 1000 mg intravenous every 4 weeks) for 8 weeks failed to achieve the 12-week primary and secondary efficacy endpoints relative to placebo. In addition to possible differences in GFRα3 biology between mice and humans, we highlight here differences in experimental parameters that could have contributed to a different profile of efficacy in mouse models versus human OA pain. Additional research is required to more fully evaluate any potential role of GFRα3 in human pain
    corecore