1,225 research outputs found

    Organic Geochemical Investigation of a Highly Contaminated Urban Waterway: The Gowanus Canal, Brooklyn, New York, USA

    Get PDF
    The Gowanus Canal is an industrial waterway constructed in the mid-19th century by widening and deepening a natural tidal channel. It is ca. 3 km in length and empties into Gowanus Bay, an arm of New York Harbor. Its banks, reinforced by bulkheads and piers, became the site of intensive industrial activity, including oil refining, coal gasification, soap making and tanning. Even though much of the industrial activity along the canal has ceased, its sediments remain highly enriched in organic and inorganic contaminants, with combined sewer outfalls continuing to transport pollutants into the canal. The canal area remains densely populated and community pressure is providing impetus for remediation and redevelopment (U.S. Army Corps of Engineers, 2004). As part of a program of continuing sediment quality monitoring, a series of 10 grab samples were collected along the length of the canal. Standard environmental chemical analyses were performed (volatile and semi-volatile organics, PCBs, metals). Dried sediment samples were also analyzed by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermodesorption-gas chromatography/mass spectrometry (TD-GC/MS). Py-GC/MS results from two samples are presented. Sample 15A was collected near the mid-point of the canal and is the most highly enriched in parent PAHs, up to several hundred mg/kg. Sample 29A was collected near the head of the canal, i.e., the point farthest inland, with parent PAH concentrations of 5-70 mg/kg. The pyrolyzates contain phenols, pyrroles, indoles and guaiacols as both terrestrial and aquatic biomass signatures, but these are overshadowed by the 3 to 5 ring PAHs, parent and methylated, for sample 15A and by sterenes and fatty acids for sample 29A. For sample 15A, the phenanthrene series (up to the C3-alkylphenanthrenes), the pyrene series (up to C2-alkylpyrenes and isomers), and the chrysene series (including methylchrysenes and isomers) are strongly predominant, along with benzofluoranthenes and benzopyrenes. The dibenzothiophene and benzonaphthothiophene series attest to a significant organosulfur component within the mixture. The pyrolyzate of sample 29A contains the same aromatic compounds, but at much lower concentrations. Rather, there is the striking predominance of C27 and C29 sterenes, along with C16 and C18 fatty acids. Steradienes, C28 sterenes, alkylnitriles and alkylamides are also detected, but at lower concentrations. The sterenes and fatty acids are minor components in sample 15A as well. The PAH distributions are characteristic of creosote, a coal-tar derivative and by-product of coal gasification. If these had been due to petroleum or petroleum product contamination, more abundant petroleum biomarker compounds would be expected. These were detected by TD-GC/MS using selected ion monitoring, but in trace quantities only. The sterenes and fatty acids likely derive from raw and/or partially treated sewage. In spite of the recent reopening of the flushing tunnel at the head of the canal after decades of disuse, it is evident that acute sediment pollution persists in the Gowanus sediments

    A dc voltage step-up transformer based on a bi-layer \nu=1 quantum Hall system

    Full text link
    A bilayer electron system in a strong magnetic field at low temperatures, with total Landau level filling factor nu =1, can enter a strongly coupled phase, known as the (111) phase or the quantum Hall pseudospin-ferromagnet. In this phase there is a large quantized Hall drag resistivity between the layers. We consider here structures where regions of (111) phase are separated by regions in which one of the layers is depleted by means of a gate, and various of the regions are connected together by wired contacts. We note that with suitable designs, one can create a DC step-up transformer where the output voltage is larger than the input, and we show how to analyze the current flows and voltages in such devices

    Persistent Currents and Dissipation in Narrow Bilayer Quantum Hall Bars

    Full text link
    Bilayer quantum Hall states support a flow of nearly dissipationless staggered current which can only decay through collective channels. We study the dominant finite-temperature dissipation mechanism which in narrow bars is driven by thermal nucleation of pseudospin solitons. We find the finite-temperature resistivity, predict the resulting staggered current-voltage characteristics, and calculate the associated zero-temperature critical staggered current and gate voltage.Comment: 4 pgs. REVTeX, 3 eps figure

    Strong enhancement of drag and dissipation at the weak- to strong- coupling phase transition in a bi-layer system at a total Landau level filling nu=1

    Full text link
    We consider a bi-layer electronic system at a total Landau level filling factor nu =1, and focus on the transition from the regime of weak inter-layer coupling to that of the strongly coupled (1,1,1) phase (or ''quantum Hall ferromagnet''). Making the assumption that in the transition region the system is made of puddles of the (1,1,1) phase embedded in a bulk of the weakly coupled state, we show that the transition is accompanied by a strong increase in longitudinal Coulomb drag, that reaches a maximum of approximately h/2e2h/2e^{2}. In that regime the longitudinal drag is increased with decreasing temperature.Comment: four pages, one included figur

    Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet

    Full text link
    Skin cancer, a major form of cancer, is a critical public health problem with 123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma cases worldwide each year. The leading cause of skin cancer is high exposure of skin cells to UV radiation, which can damage the DNA inside skin cells leading to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed visually employing clinical screening, a biopsy, dermoscopic analysis, and histopathological examination. It has been demonstrated that the dermoscopic analysis in the hands of inexperienced dermatologists may cause a reduction in diagnostic accuracy. Early detection and screening of skin cancer have the potential to reduce mortality and morbidity. Previous studies have shown Deep Learning ability to perform better than human experts in several visual recognition tasks. In this paper, we propose an efficient seven-way automated multi-class skin cancer classification system having performance comparable with expert dermatologists. We used a pretrained MobileNet model to train over HAM10000 dataset using transfer learning. The model classifies skin lesion image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36 percent and top3 accuracy of 95.34 percent. The weighted average of precision, recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The model has been deployed as a web application for public use at (https://saketchaturvedi.github.io). This fast, expansible method holds the potential for substantial clinical impact, including broadening the scope of primary care practice and augmenting clinical decision-making for dermatology specialists.Comment: This is a pre-copyedited version of a contribution published in Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R., Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The definitive authentication version is available online via https://doi.org/10.1007/978-981-15-3383-9_1

    NuSTAR Observations of the Magnetar 1E 2259+586

    Get PDF
    We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double-blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggests that an additional component, such as a power-law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.Comment: 37 pages, 9 figures, corresponding author, [email protected]

    Semilinear mixed problems on Hilbert complexes and their numerical approximation

    Full text link
    Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010), 281-354] that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article [arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing variational crimes (a la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk [Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J. Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold-Falk-Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error estimates in Section

    Broadband Observations of the Compton-thick Nucleus of NGC 3393

    Get PDF
    We present new NuSTAR and Chandra observations of NGC 3393, a galaxy reported to host the smallest separation dual AGN resolved in the X-rays. While past results suggested a 150 pc separation dual AGN, three times deeper Chandra imaging, combined with adaptive optics and radio imaging suggest a single, heavily obscured, radio-bright AGN. Using VLA and VLBA data, we find an AGN with a two-sided jet rather than a dual AGN and that the hard X-ray, UV, optical, NIR, and radio emission are all from a single point source with a radius <0.2". We find that the previously reported dual AGN is most likely a spurious detection resulting from the low number of X-ray counts (<160) at 6-7 keV and Gaussian smoothing of the data on scales much smaller than the PSF (0.25" vs. 0.80" FWHM). We show that statistical noise in a single Chandra PSF generates spurious dual peaks of the same separation (0.55±\pm0.07" vs. 0.6") and flux ratio (39±\pm9% vs. 32% of counts) as the purported dual AGN. With NuSTAR, we measure a Compton-thick source (NH=2.2±0.4×10242.2\pm0.4\times10^{24} cm−2^{-2}) with a large torus half-opening angle, {\theta}=79 which we postulate results from feedback from strong radio jets. This AGN shows a 2-10 keV intrinsic to observed flux ratio of 150. Using simulations, we find that even the deepest Chandra observations would severely underestimate the intrinsic luminosity of NGC 3393 above z>0.2, but would detect an unobscured AGN of this luminosity out to high redshift (z=5).Comment: Accepted for publication in ApJ. 15 Figures and 4 table

    AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software.

    Get PDF
    Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (
    • …
    corecore