284 research outputs found

    Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease:a mendelian randomisation study

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease accounting for 1% of UK deaths. In the familial form of pulmonary fibrosis, causal genes have been identified in about 30% of cases, and a majority of these causal genes are associated with telomere maintenance. Prematurely shortened leukocyte telomere length is associated with IPF and chronic obstructive pulmonary disease (COPD), a disease with similar demographics and shared risk factors. Using mendelian randomisation, we investigated evidence supporting a causal role for short telomeres in IPF and COPD. Methods: Mendelian randomisation inference of telomere length causality was done for IPF (up to 1369 cases) and COPD (13 538 cases) against 435 866 controls of European ancestry in UK Biobank. Polygenic risk scores were calculated and two-sample mendelian randomisation analyses were done using seven genetic variants previously associated with telomere length, with replication analysis in an IPF cohort (2668 cases vs 8591 controls) and COPD cohort (15 256 cases vs 47 936 controls). Findings: In the UK Biobank, a genetically instrumented one-SD shorter telomere length was associated with higher odds of IPF (odds ratio [OR] 4·19, 95% CI 2·33–7·55; p=0·0031) but not COPD (1·07, 0·88–1·30; p=0·51). Similarly, an association was found in the IPF replication cohort (12·3, 5·05–30·1; p=0·0015) and not in the COPD replication cohort (1·04, 0·71–1·53; p=0·83). Meta-analysis of the two-sample mendelian randomisation results provided evidence inferring that shorter telomeres cause IPF (5·81 higher odds of IPF, 95% CI 3·56–9·50; p=2·19 × 10−12). There was no evidence to infer that telomere length caused COPD (OR 1·07, 95% CI 0·90–1·27; p=0·46). Interpretation: Cellular senescence is hypothesised as a major driving force in IPF and COPD; telomere shortening might be a contributory factor in IPF, suggesting divergent mechanisms in COPD. Defining a key role for telomere shortening enables greater focus in telomere-related diagnostics, treatments, and the search for a cure in IPF. Investigation of therapies that improve telomere length is warranted. Funding: Medical Research Council.</p

    Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease:a mendelian randomisation study

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease accounting for 1% of UK deaths. In the familial form of pulmonary fibrosis, causal genes have been identified in about 30% of cases, and a majority of these causal genes are associated with telomere maintenance. Prematurely shortened leukocyte telomere length is associated with IPF and chronic obstructive pulmonary disease (COPD), a disease with similar demographics and shared risk factors. Using mendelian randomisation, we investigated evidence supporting a causal role for short telomeres in IPF and COPD. Methods: Mendelian randomisation inference of telomere length causality was done for IPF (up to 1369 cases) and COPD (13 538 cases) against 435 866 controls of European ancestry in UK Biobank. Polygenic risk scores were calculated and two-sample mendelian randomisation analyses were done using seven genetic variants previously associated with telomere length, with replication analysis in an IPF cohort (2668 cases vs 8591 controls) and COPD cohort (15 256 cases vs 47 936 controls). Findings: In the UK Biobank, a genetically instrumented one-SD shorter telomere length was associated with higher odds of IPF (odds ratio [OR] 4·19, 95% CI 2·33–7·55; p=0·0031) but not COPD (1·07, 0·88–1·30; p=0·51). Similarly, an association was found in the IPF replication cohort (12·3, 5·05–30·1; p=0·0015) and not in the COPD replication cohort (1·04, 0·71–1·53; p=0·83). Meta-analysis of the two-sample mendelian randomisation results provided evidence inferring that shorter telomeres cause IPF (5·81 higher odds of IPF, 95% CI 3·56–9·50; p=2·19 × 10−12). There was no evidence to infer that telomere length caused COPD (OR 1·07, 95% CI 0·90–1·27; p=0·46). Interpretation: Cellular senescence is hypothesised as a major driving force in IPF and COPD; telomere shortening might be a contributory factor in IPF, suggesting divergent mechanisms in COPD. Defining a key role for telomere shortening enables greater focus in telomere-related diagnostics, treatments, and the search for a cure in IPF. Investigation of therapies that improve telomere length is warranted. Funding: Medical Research Council.</p

    Host-Specific Response to HCV Infection in the Chimeric SCID-beige/Alb-uPA Mouse Model: Role of the Innate Antiviral Immune Response

    Get PDF
    The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression

    Evidence that acetyl phosphate functions as a global signal during biofilm development

    Get PDF
    We used DNA macroarray analysis to identify genes that respond to the status of the intracellular acetyl phosphate (acP) pool. Genes whose expression correlated negatively with the ability to synthesize acP (i.e. negatively regulated genes) function primarily in flagella biosynthesis, a result consistent with observations that we published previously (Prüß and Wolfe, 1994, Mol Microbiol 12: 973-984). In contrast, genes whose expression correlated positively with the ability to synthesize acP (i.e. positively regulated genes) include those for type 1 pilus assembly, colanic acid (capsule) biosynthesis and certain stress effectors. To our knowledge, this constitutes the first report that these genes may respond to the status of the intracellular acP pool. Previously, other researchers have implicated flagella, type 1 pili, capsule and diverse stress effectors in the formation of biofilms. We therefore tested whether cells altered in their ability to metabolize acP could construct normal biofilms, and found that they could not. Cells defective for the production of acP and cells defective for the degradation of acP could both form biofilms, but these biofilms exhibited characteristics substantially different from each other and from biofilms formed by their wild-type parent. We confirmed the role of individual cell surface structures, the expression of which appears to correlate with acP levels, in fim or fli mutants that cannot assemble type 1 pili or flagella respectively. Thus, the information gained by expression profiling of cells with altered acP metabolism indicates that acP may help to co-ordinate the expression of surface structures and cellular processes involved in the initial stages of wild-type biofilm development

    Can prophylactic breast irradiation contribute to cardiac toxicity in patients with prostate cancer receiving androgen suppressing drugs?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Androgen suppression treatment (AST) might increase the risk of cardiac morbidity in prostate cancer patients. Possible explanations were provided, however, they disregard the potential contribution of prophylactic radiotherapy to the mamillary regions (PMRT, prescribed to avoid gynecomastia).</p> <p>Methods</p> <p>We studied the exposure of the heart in a typical electron beam PMRT setting by evaluating computed tomography (CT) scans in 40 non-cancer patients (age 65 and 75 years in 50% each) and 17 prostate cancer patients. Five of the younger, 7 of the older and 4 of the cancer patients had significant cardiac disease.</p> <p>Results</p> <p>The median distance between skin and outer heart contour decreased with age. In all three groups, patients with cardiac morbidity had smaller distances. When using the CT-determined PMRT beam energy, 10% of the younger, 15% of the older and none of the prostate cancer patients would receive approximately 50% of the prescription dose to a part of the heart (2 had no history of cardiac disease). When using the clinically rather than CT-determined beam energy, as often done in daily practice, an additional 12.5% of the non-cancer and 12% of the prostate cancer patients would be exposed to comparably high doses.</p> <p>Conclusion</p> <p>The present data provide preliminary evidence that PMRT might be a factor that contributes to cardiac side effects. Previous studies that established a relationship between AST and cardiac morbidity did not include information on delivery of PMRT.</p

    Quantifying the extent to which index event biases influence large genetic association studies

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.As genetic association studies increase in size to 100,000s of individuals, subtle biases may influence conclusions. One possible bias is "index event bias" (IEB) that appears due to the stratification by, or enrichment for, disease status when testing associations between genetic variants and a disease-associated trait. We aimed to test the extent to which IEB influences some known trait associations in a range of study designs and provide a statistical framework for assessing future associations. Analysing data from 113,203 non-diabetic UK Biobank participants, we observed three (near TCF7L2, CDKN2AB and CDKAL1) overestimated (BMI-decreasing) and one (near MTNR1B) underestimated (BMI-increasing) associations among 11 type 2 diabetes risk alleles (at P  500,000 if the prevalence of those diseases differs by > 10% from the background population. In conclusion, IEB may result in false positive or negative genetic associations in very large studies stratified or strongly enriched for/against disease cases.H.Y., A.R.W. and T.M.F. are supported by the European Research Council grant: 323195; SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC. S.E.J. is funded by the Medical Research Council (grant: MR/M005070/1). M.A.T., M.N.W. and A.M. are supported by the Wellcome Trust Institutional Strategic Support Award (WT097835MF). R.M.F. is a Sir Henry Dale Fellow (Wellcome Trust and Royal Society grant: 104150/Z/14/Z). R.B. is funded by the Wellcome Trust and Royal Society grant: 104150/Z/14/Z. J.T. is funded by a Diabetes Research and Wellness Foundation Fellowship. Z.K. received financial support from the Leenaards Foundation, the Swiss Institute of Bioinformatics and the Swiss National Science Foundation (31003A-143914) and SystemsX.ch (39). The work of M.P.B was supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award no. T32HL007779. Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. E.R.P. holds a WT New investigator award 102820/Z/13/Z

    Lipid hydroperoxides and oxylipins are mediators of denervation induced muscle atrophy

    Get PDF
    Loss of innervation is a key driver of age associated muscle atrophy and weakness (sarcopenia). Our laboratory has previously shown that denervation induced atrophy is associated with the generation of mitochondrial hydroperoxides and lipid mediators produced downstream of cPLA2 and 12/15 lipoxygenase (12/15-LOX). To define the pathological impact of lipid hydroperoxides generated in denervation-induced atrophy in vivo, we treated mice with liproxstatin-1, a lipid hydroperoxide scavenger. We treated adult male mice with 5mg/kg liproxstain-1 or vehicle one day prior to sciatic nerve transection and daily for 7 days post-denervation before tissue analysis. Liproxstatin-1 treatment protected gastrocnemius mass and fiber cross sectional area (∼40% less atrophy post-denervation in treated versus untreated mice). Mitochondrial hydroperoxide generation was reduced 80% in vitro and by over 65% in vivo by liproxstatin-1 treatment in denervated permeabilized muscle fibers and decreased the content of 4-HNE by ∼25% post-denervation. Lipidomic analysis revealed detectable levels of 25 oxylipins in denervated gastrocnemius muscle and significantly increased levels for eight oxylipins that are generated by metabolism of fatty acids through 12/15-LOX. Liproxstatin-1 treatment reduced the level of three of the eight denervation-induced oxylipins, specifically 15-HEPE, 13-HOTrE and 17-HDOHE. Denervation elevated protein degradation rates in muscle and treatment with liproxstatin-1 reduced rates of protein breakdown in denervated muscle. In contrast, protein synthesis rates were unchanged by denervation. Targeted proteomics revealed a number of proteins with altered expression after denervation but no effect of liproxstain-1. Transcriptomic analysis revealed 203 differentially expressed genes in denervated muscle from vehicle or liproxstatin-1 treated mice, including ER stress, nitric oxide signaling, Gαi signaling, glucocorticoid receptor signaling, and other pathways. Overall, these data suggest lipid hydroperoxides and oxylipins are key drivers of increased protein breakdown and muscle loss associated with denervation induced atrophy and a potential target for sarcopenia intervention

    Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease.

    Get PDF
    Recent genetic studies have identified some alleles that are associated with higher BMI but lower risk of type 2 diabetes, hypertension, and heart disease. These "favorable adiposity" alleles are collectively associated with lower insulin levels and higher subcutaneous-to-visceral adipose tissue ratio and may protect from disease through higher adipose storage capacity. We aimed to use data from 164,609 individuals from the UK Biobank and five other studies to replicate associations between a genetic score of 11 favorable adiposity variants and adiposity and risk of disease, to test for interactions between BMI and favorable adiposity genetics, and to test effects separately in men and women. In the UK Biobank, the 50% of individuals carrying the most favorable adiposity alleles had higher BMIs (0.120 kg/m(2) [95% CI 0.066, 0.174]; P = 1E-5) and higher body fat percentage (0.301% [0.230, 0.372]; P = 1E-16) compared with the 50% of individuals carrying the fewest alleles. For a given BMI, the 50% of individuals carrying the most favorable adiposity alleles were at lower risk of type 2 diabetes (odds ratio [OR] 0.837 [0.784, 0.894]; P = 1E-7), hypertension (OR 0.935 [0.911, 0.958]; P = 1E-7), and heart disease (OR 0.921 [0.872, 0.973]; P = 0.003) and had lower blood pressure (systolic -0.859 mmHg [-1.099, -0.618]; P = 3E-12 and diastolic -0.394 mmHg [-0.534, -0.254]; P = 4E-8). In women, these associations could be explained by the observation that the alleles associated with higher BMI but lower risk of disease were also associated with a favorable body fat distribution, with a lower waist-to-hip ratio (-0.004 cm [95% CI -0.005, -0.003] 50% vs. 50%; P = 3E-14), but in men, the favorable adiposity alleles were associated with higher waist circumference (0.454 cm [0.267, 0.641] 50% vs. 50%; P = 2E-6) and higher waist-to-hip ratio (0.0013 [0.0003, 0.0024] 50% vs. 50%; P = 0.01). Results were strengthened when a meta-analysis with five additional studies was conducted. There was no evidence of interaction between a genetic score consisting of known BMI variants and the favorable adiposity genetic score. In conclusion, different molecular mechanisms that lead to higher body fat percentage (with greater subcutaneous storage capacity) can have different impacts on cardiometabolic disease risk. Although higher BMI is associated with higher risk of diseases, better fat storage capacity could reduce the risk.This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db15-167

    Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-β-lactamases

    Get PDF
    Metallo‐β‐Lactamases (MBLs) protect bacteria from almost all β‐lactam antibiotics. Verona integron‐encoded MBL (VIM) enzymes are among the most clinically important MBLs, with VIM‐1 increasing in carbapenem‐resistant Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae) that are among the hardest bacterial pathogens to treat. VIM enzymes display sequence variation at residues (224 and 228) that in related MBLs are conserved and participate in substrate binding. How they accommodate this variability, while retaining catalytic efficiency against a broad substrate range, has remained unclear. Here, we present crystal structures of VIM‐1 and its complexes with a substrate‐mimicking thioenolate inhibitor, ML302F, that restores meropenem activity against a range of VIM‐1 producing clinical strains, and the hydrolysed product of the carbapenem meropenem. Comparison of these two structures identifies a water‐mediated hydrogen bond, between the carboxylate group of substrate/inhibitor and the backbone carbonyl of the active site zinc ligand Cys221, that is common to both complexes. Structural comparisons show that the responsible Cys221‐bound water is observed in all known VIM structures, participates in carboxylate binding with other inhibitor classes, and thus effectively replicates the role of the conserved Lys224 in analogous complexes with other MBLs. These results provide a mechanism for substrate binding that permits the variation at positions 224 and 228 that is a hallmark of VIM MBLs

    Detection and characterization of male sex chromosome abnormalities in the UK Biobank study

    Get PDF
    Purpose: The study aimed to systematically ascertain male sex chromosome abnormalities, 47,XXY (Klinefelter syndrome [KS]) and 47,XYY, and characterize their risks of adverse health outcomes. Methods: We analyzed genotyping array or exome sequence data in 207,067 men of European ancestry aged 40 to 70 years from the UK Biobank and related these to extensive routine health record data. Results: Only 49 of 213 (23%) of men whom we identified with KS and only 1 of 143 (0.7%) with 47,XYY had a diagnosis of abnormal karyotype on their medical records or self-report. We observed expected associations for KS with reproductive dysfunction (late puberty: risk ratio [RR] = 2.7; childlessness: RR = 4.2; testosterone concentration: RR = -3.8 nmol/L, all P < 2 x 10(-8)), whereas XYY men appeared to have normal reproductive function. Despite this difference, we identified several higher disease risks shared across both KS and 47,XYY, including type 2 diabetes (RR = 3.0 and 2.6, respectively), venous thrombosis (RR = 6.4 and 7.4, respectively), pulmonary embolism (RR = 3.3 and 3.7, respectively), and chronic obstructive pulmonary disease (RR = 4.4 and 4.6, respectively) (all P Conclusion: KS and 47,XYY were mostly unrecognized but conferred substantially higher risks for metabolic, vascular, and respiratory diseases, which were only partially explained by higher levels of body mass index, deprivation, and smoking. (C) 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics.Peer reviewe
    corecore