13 research outputs found

    Distinct Molecular Evolutionary Mechanisms Underlie the Functional Diversification of the Wnt and TGFĪ² Signaling Pathways

    Get PDF
    The canonical Wnt pathway is one of the oldest and most functionally diverse of animal intercellular signaling pathways. Though much is known about loss-of-function phenotypes for Wnt pathway components in several model organisms, the question of how this pathway achieved its current repertoire of functions has not been addressed. Our phylogenetic analyses of 11 multigene families from five species belonging to distinct phyla, as well as additional analyses employing the 12 Drosophila genomes, suggest frequent gene duplications affecting ligands and receptors as well as co-evolution of new ligandā€“receptor pairs likely facilitated the expansion of this pathwayā€™s capabilities. Further, several examples of recent gene loss are visible in Drosophila when compared to family members in other phyla. By comparison the TGFĪ² signaling pathway is characterized by ancient gene duplications of ligands, receptors, and signal transducers with recent duplication events restricted to the vertebrate lineage. Overall, the data suggest that two distinct molecular evolutionary mechanisms can create a functionally diverse developmental signaling pathway. These are the recent dynamic generation of new genes and ligandā€“receptor interactions as seen in the Wnt pathway and the conservative adaptation of ancient pre-existing genes to new roles as seen in the TGFĪ² pathway. From a practical perspective, the former mechanism limits the investigatorā€™s ability to transfer knowledge of specific pathway functions across species while the latter facilitates knowledge transfer

    Problem and Pathological Gambling in a Sample of Casino Patrons

    Get PDF
    Relatively few studies have examined gambling problems among individuals in a casino setting. The current study sought to examine the prevalence of gambling problems among a sample of casino patrons and examine alcohol and tobacco use, health status, and quality of life by gambling problem status. To these ends, 176 casino patrons were recruited by going to a Southern California casino and requesting that they complete an anonymous survey. Results indicated the following lifetime rates for at-risk, problem, and pathological gambling: 29.2, 10.7, and 29.8%. Differences were found with regards to gambling behavior, and results indicated higher rates of smoking among individuals with gambling problems, but not higher rates of alcohol use. Self-rated quality of life was lower among pathological gamblers relative to non-problem gamblers, but did not differ from at-risk or problem gamblers. Although subject to some limitations, our data support the notion of higher frequency of gambling problems among casino patrons and may suggest the need for increased interventions for gambling problems on-site at casinos

    The Sno Oncogene Antagonizes Wingless Signaling during Wing Development in Drosophila

    Get PDF
    The Sno oncogene (Snoo or dSno in Drosophila) is a highly conserved protein and a well-established antagonist of Transforming Growth Factor-Ī² signaling in overexpression assays. However, analyses of Sno mutants in flies and mice have proven enigmatic in revealing developmental roles for Sno proteins. Thus, to identify developmental roles for dSno we first reconciled conflicting data on the lethality of dSno mutations. Then we conducted analyses of wing development in dSno loss of function genotypes. These studies revealed ectopic margin bristles and ectopic campaniform sensilla in the anterior compartment of the wing blade suggesting that dSno functions to antagonize Wingless (Wg) signaling. A subsequent series of gain of function analyses yielded the opposite phenotype (loss of bristles and sensilla) and further suggested that dSno antagonizes Wg signal transduction in target cells. To date Sno family proteins have not been reported to influence the Wg pathway during development in any species. Overall our data suggest that dSno functions as a tissue-specific component of the Wg signaling pathway with modest antagonistic activity under normal conditions but capable of blocking significant levels of extraneous Wg, a role that may be conserved in vertebrates

    lolal Is an Evolutionarily New Epigenetic Regulator of dpp Transcription during Dorsal-Ventral Axis Formation

    Get PDF
    Secreted ligands in the Dpp/BMP family drive dorsal-ventral (D/V) axis formation in all Bilaterian species. However, maternal factors regulating Dpp/BMP transcription in this process are largely unknown. We identified the BTB domain protein longitudinals lacking-like (lolal) as a modifier of decapentaplegic (dpp) mutations. We show that Lolal is evolutionarily related to the Trithorax group of chromatin regulators and that lolal interacts genetically with the epigenetic factor Trithorax-like during Dpp D/V signaling. Maternally driven Lolal(HA) is found in oocytes and translocates to zygotic nuclei prior to the point at which dpp transcription begins. lolal maternal and zygotic mutant embryos display significant reductions in dpp, pMad, and zerknullt expression, but they are never absent. The data suggest that lolal is required to maintain dpp transcription during D/V patterning. Phylogenetic data revealed that lolal is an evolutionarily new gene present only in insects and crustaceans. We conclude that Lolal is the first maternal protein identified with a role in dpp D/V transcriptional maintenance, that Lolal and the epigenetic protein Trithorax-like are essential for Dpp D/V signaling and that the architecture of the Dpp D/V pathway evolved in the arthropod lineage after the separation from vertebrates via the incorporation of new genes such as lolal.Peer reviewe
    corecore