4,187 research outputs found

    Trapping effects in Cds devices

    Get PDF
    In order to study the possible effect of interface states on the efficiency of the CdS/Cu(_2)S heterojunction solar cell, the simpler structure of metal-on-insulator-on-CdS has been investigated. It has proved impossible to apply the theories appropriate to MIS devices on silicon, mainly because of the difficulties of producing a uniform oxide layer. However, a hypothesis has been put forward which is consistent with the experimental observations and which may be applicable to other results reported in the literature. The use of a scanning electron microscope (S.E.M.) particularly in the induced current mode, has allowed complementary investigations of surface properties to be carried out. The chemical preparation of a copper sulphide layer on CdS under different conditions is described and the various phases of Cu(_x)S produced are identified. The optical and electronic properties of these devices have been investigated under two-beam illumination to excite trapping effects. Further use of the S.E.M. with these structures has shown how useful this instrument can be in the analysis of semiconductor junctions. Finally, a number of conclusions relevant to the production of a more efficient cell are presented and a modified band structure model of the heterojunction is proposed

    Alliances in the Gray Areas

    Get PDF
    The purposes of this article are twofold: first, to identify certain emerging, still evolving, trends in international relations; and second, to relate those trends to present realities. It will concentrate on the evidence pointing to loose coalitions opposed to the United States and Western democracy generally

    Simulating a dual beam combiner at SUSI for narrow-angle astrometry

    Full text link
    The Sydney University Stellar Interferometer (SUSI) has two beam combiners, i.e. the Precision Astronomical Visible Observations (PAVO) and the Microarcsecond University of Sydney Companion Astrometry (MUSCA). The primary beam combiner, PAVO, can be operated independently and is typically used to measure properties of binary stars of less than 50 milliarc- sec (mas) separation and the angular diameters of single stars. On the other hand, MUSCA was recently installed and must be used in tandem with the for- mer. It is dedicated for microarcsecond precision narrow-angle astrometry of close binary stars. The performance evaluation and development of the data reduction pipeline for the new setup was assisted by an in-house computer simulation tool developed for this and related purposes. This paper describes the framework of the simulation tool, simulations carried out to evaluate the performance of each beam combiner and the expected astrometric precision of the dual beam combiner setup, both at SUSI and possible future sites.Comment: 28 pages, 23 figures, accepted for publication in Experimental Astronomy. The final publication is available at http://link.springer.co

    Command Generation and Control of Momentum Exchange Electrodynamic Reboost Tethered Satellite

    Get PDF
    The research completed for this NASA Graduate Student Research Program Fellowship sought to enhance the current state-of-the-art dynamic models and control laws for Momentum Exchange Electrodynamic Reboost satellite systems by utilizing command generation, specifically Input Shaping. The precise control of tethered spacecraft with flexible appendages is extremely difficult. The complexity is magnified many times when the satellite must interact with other satellites as in a momentum exchange via a tether. The Momentum Exchange Electronic Reboost Tether (MXER) concept encapsulates all of these challenging tasks [l]. Input Shaping is a command generation technique that allows flexible spacecraft to move without inducing residual vibration [2], limit transient deflection [3] and utilize fuel-efficient actuation [4]. Input shaping is implemented by convolving a sequence of impulses, known as the input shaper, with a desired system command to produce a shaped input that is then used to drive the system. This process is demonstrated in Figure 1. The shaped command is then use to drive the system without residual vibration while meeting many other performance specifications. The completed work developed tether control algorithms for retrieval. A simple model of the tether response has been developed and command shaping was implemented to minimize unwanted dynamics. A model of a flexible electrodynamic tether has been developed to investigate the tether s response during reboost. Command shaping techniques have been developed to eliminate the tether oscillations and reduce the tether s deflection to pre-specified levels during reboost. Additionally, a model for the spin-up of a tethered system was developed. This model was used in determining the parameters for optimization the resulting angular velocity

    Stellar Activity and its Implications for Exoplanet Detection on GJ 176

    Full text link
    We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10 years from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over 6 years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.Comment: Accepted for publication in Ap

    Bio-economic evaluation of pasture-cropping, a novel system of integrating perennial pastures and crops on crop-livestock farms

    Get PDF
    Pasture-cropping is a novel approach to increase the area of perennial crops in mixed sheep and cropping systems. It involves planting annual cereals directly into a living perennial pasture. There is interest in subtropical grasses as they are winter dormant and their growth profile is potentially well suited to pasture-cropping. However, a wide range of factors can affect the uptake of such systems. This paper assesses the relative importance of factors that can influence decisions to introduce pasture-cropping. In this paper the research question is: what factors predispose a farm to take up a new technology such as (1) subtropical grass and (2) subtropical grass that is pasture-cropped. The analysis uses the MIDAS model of a central wheatbelt farm in Western Australia. The results suggest the adoption of subtropical grasses is likely to be strongly influenced by soil mix; feed quality; and whether the farm is predominantly grazing or cropping and by the presence of meat versus wool producing animals. The same factors are relevant for subtropical grass that is pasture-cropped but in addition yield penalties due to competition between the host perennial and the companion cereal become important. The results suggest the level of forage production by subtropical grass is less important but this factor is likely to become more important if feed quality can be improved.Environmental Economics and Policy,

    Solar Eclipse Has Little Discernible Effect On Bat Activity

    Get PDF
    N/A - Research Not

    Secretly Eccentric: The Giant Planet and Activity Cycle of GJ 328

    Get PDF
    We announce the discovery of a ~2 Jupiter-mass planet in an eccentric 11-year orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years' worth of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m/s. After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf.Comment: Accepted for publication in Ap

    A low cost scheme for high precision dual-wavelength laser metrology

    Full text link
    A novel method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application where this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical with that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the non-common-path between metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic

    Automated precision alignment of optical components for hydroxide catalysis bonding

    Get PDF
    We describe an interferometric system that can measure the alignment and separation of a polished face of a optical component and an adjacent polished surface. Accuracies achieved are ∼ 1μrad for the relative angles in two orthogonal directions and ∼ 30μm in separation. We describe the use of this readout system to automate the process of hydroxide catalysis bonding of a fused-silica component to a fused-silica baseplate. The complete alignment and bonding sequence was typically achieved in a timescale of a few minutes, followed by an initial cure of 10 minutes. A series of bonds were performed using two fluids - a simple sodium hydroxide solution and a sodium hydroxide solution with some sodium silicate solution added. In each case we achieved final bonded component angular alignment within 10 μrad and position in the critical direction within 4 μm of the planned targets. The small movements of the component during the initial bonding and curing phases were monitored. The bonds made using the sodium silicate mixture achieved their final bonded alignment over a period of ∼ 15 hours. Bonds using the simple sodium hydroxide solution achieved their final alignment in a much shorter time of a few minutes. The automated system promises to speed the manufacture of precision-aligned assemblies using hydroxide catalysis bonding by more than an order of magnitude over the more manual approach used to build the optical interferometer at the heart of the recent ESA LISA Pathfinder technology demonstrator mission. This novel approach will be key to the time-efficient and low-risk manufacture of the complex optical systems needed for the forthcoming ESA spaceborne gravitational waves observatory mission, provisionally named LISA
    • …
    corecore