36 research outputs found

    Maximal variance reduction for stochastic propagators with applications to the static quark spectrum

    Get PDF
    We study a new method -- maximal variance reduction -- for reducing the variance of stochastic estimators for quark propagators. We find that while this method is comparable to usual iterative inversion for light-light mesons, a considerable improvement is achieved for systems containing at least one infinitely heavy quark. Such systems are needed for heavy quark effective theory. As an illustration of the effectiveness of the method we present results for the masses of the ground state and excited states of Qˉq\bar{Q}q mesons and Qˉqq\bar{Q}qq baryons. We compare these results with the experimental spectra involving bb quarks.Comment: 31 pages with 7 postscript file

    Numerical tests of the electroweak phase transition and thermodynamics of the electroweak plasma

    Get PDF
    The finite temperature phase transition in the SU(2) Higgs model at a Higgs boson mass MH34M_H \simeq 34 GeV is studied in numerical simulations on four-dimensional lattices with time-like extensions up to Lt=5L_t=5. The effects of the finite volume and finite lattice spacing on masses and couplings are studied in detail. The errors due to uncertainties in the critical hopping parameter are estimated. The thermodynamics of the electroweak plasma near the phase transition is investigated by determining the relation between energy density and pressure.Comment: latex2e, 32 pages, 11 figures with epsfig; A few comments and a new table are adde

    Sphaleron Effects Near the Critical Temperature

    Full text link
    We discuss one-loop radiative corrections to the sphaleron-induced baryon number-violating transition rate near the electroweak phase transition in the standard model. We emphasize that in the case of a first-order transition a rearrangement of the loop expansion is required close to the transition temperature. The corresponding expansion parameter, the effective 3-dimensional gauge coupling approaches a finite λ\lambda dependent value at the critical temperature. The λ\lambda (Higgs mass) dependence of the 1-loop radiative corrections is discussed in the framework of the heat kernel method. Radiative corrections are small compared to the leading sphaleron contribution as long as the Higgs mass is small compared to the W mass. To 1-loop accuracy, there is no Higgs mass range compatible with experimental limits where washing-out of a B+L asymmetry could be avoided for the minimal standard model with one Higgs doublet.Comment: 17 pages, RevTeX, (4 figures in a separate uuencoded file), HD-THEP-93-23re

    Local Chirality of Low-Lying Dirac Eigenmodes and the Instanton Liquid Model

    Get PDF
    The reasons for using low-lying Dirac eigenmodes to probe the local structure of topological charge fluctuations in QCD are discussed, and it is pointed out that the qualitative double-peaked behavior of the local chiral orientation probability distribution in these modes is necessary, but not sufficient for dominance of instanton-like fluctuations. The results with overlap Dirac operator in Wilson gauge backgrounds at lattice spacings ranging from a~0.04 fm to a~0.12 fm are reported, and it is found that the size and density of local structures responsible for double-peaking of the distribution are in disagreement with the assumptions of the Instanton Liquid Model. More generally, our results suggest that vacuum fluctuations of topological charge are not effectively dominated by locally quantized (integer-valued) lumps in QCD.Comment: 29 pages, 13 figures; v2: minor improvements in presentation, results and conclusions unchanged, version to appear in PR

    Topology and chiral symmetry breaking in SU(N) gauge theories

    Get PDF
    We study the low-lying eigenmodes of the lattice overlap Dirac operator for SU(N) gauge theories with N=2,3,4 and 5 colours. We define a fermionic topological charge from the zero-modes of this operator and show that, as N grows, any disagreement with the topological charge obtained by cooling the fields, becomes rapidly less likely. By examining the fields where there is a disagreement, we are able to show that the Dirac operator does not resolve instantons below a critical size of about rho = 2.5 a, but resolves the larger, more physical instantons. We investigate the local chirality of the near-zero modes and how it changes as we go to larger N. We observe that the local chirality of these modes, which is prominent for SU(2) and SU(3), becomes rapidly weaker for larger N and is consistent with disappearing entirely in the limit of N -> infinity. We find that this is not due to the observed disappearance of small instantons at larger N.Comment: 41 pages, 12 figures, RevTe

    The Evolution of Ecological Diversity in Acidobacteria

    Full text link
    Acidobacteria occur in a large variety of ecosystems worldwide and are particularly abundant and highly diverse in soils. In spite of their diversity, only few species have been characterized to date which makes Acidobacteria one of the most poorly understood phyla among the domain Bacteria. We used a culture-independent niche modeling approach to elucidate ecological adaptations and their evolution for 4,154 operational taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively characterized grassland soils in Germany. Using the relative abundances of their 16S rRNA gene transcripts, the responses of active OTUs along gradients of 41 environmental variables were modeled using hierarchical logistic regression (HOF), which allowed to determine values for optimum activity for each variable (niche optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene sequences, we could trace the evolution of the different ecological adaptations during the diversification of Acidobacteria. This approach revealed a pronounced ecological diversification even among acidobacterial sister clades. Although the evolution of habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of convergent evolution that resulted in frequent habitat switching within individual clades. Our findings indicate that the high diversity of soil acidobacterial communities is largely sustained by differential habitat adaptation even at the level of closely related species. A comparison of niche optima of individual OTUs with the phenotypic properties of their cultivated representatives showed that our niche modeling approach (1) correctly predicts those physiological properties that have been determined for cultivated species of Acidobacteria but (2) also provides ample information on ecological adaptations that cannot be inferred from standard taxonomic descriptions of bacterial isolates. These novel information on specific adaptations of not-yet-cultivated Acidobacteria can therefore guide future cultivation trials and likely will increase their cultivation success

    Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma

    Get PDF
    Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low µg/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma

    Leveraging the macro-level environment to balance work and life: an analysis of female entrepreneurs' job satisfaction

    Get PDF
    This study investigates the interactive effect of female entrepreneurs’ experience of work–life imbalance and gender-egalitarian macro-level conditions on their job satisfaction, with the prediction that the negative linear relationship between work–life imbalance and job satisfaction may be buffered by the presence of women-friendly action resources, emancipative values, and civic entitlements. Data pertaining to 7,392 female entrepreneurs from 44 countries offer empirical support for these predictions. Female entrepreneurs who are preoccupied with their ability to fulfill both work and life responsibilities are more likely to maintain a certain level of job satisfaction, even if they experience significant work–life imbalances, to the extent that they operate in supportive macro-level environments

    The finite-temperature phase transition in lattice SU(2) Higgs theory at weak couplings

    No full text
    Bunk B, Ilgenfritz E-M, Kripfganz J, Schiller A. The finite-temperature phase transition in lattice SU(2) Higgs theory at weak couplings. Nuclear Physics B. 1993;403(1-2):453-474.In the weak-coupling region, at beta = 8 and a lambda corresponding to an intermediate Higgs mass, the Higgs transition is studied on asymmetric thermal (N(sigma)3 X 2) lattices. A two-state signal is identified, indicating a first-order transition. Multihistogram and finite-size analysis are consistent with such a conclusion although the evidence is rather weak. The value of the Higgs condensate upsilon(T(crit)) indicates a weakly first-order transition, in qualitative accordance with partially resummed perturbation theory. On the other hand, the latent heat and the metastability temperature range deltaT/T(crit) exceed perturbative estimates by an order of magnitude. Higgs and vector boson masses are measured on symmetric lattices near the zero-temperature phase transition. The W-mass is found to be more sensitive to the lattice size than the Higgs mass. Masses and condensates are consistent with improved tree level relations within reasonable renormalized couplings
    corecore