174 research outputs found

    Examining the role of sales-based CRM technology and social media use on post-sale service behaviors in India

    Get PDF
    Despite the growing recognition of the critical role of post-sale service on the salesperson-customer relationship, few studies have explored how salesperson service behaviors (SSB) are enhanced through tools such as sales-based customer relationship management (CRM) technology and social media. Using dyadic salesperson-customer data within a business-to-business context, this study analyzes the direct effects of sales-based CRM technology on the behaviors of diligence, information communication, inducements, empathy and sportsmanship. Additionally, the study examines the interactive effects of sales-based CRM technology and social media on these behaviors. The results indicate that sales-based CRM technology has a positive influence on SSBs and that salespeople using CRM technology in conjunction with social media are more likely to exhibit higher levels of SSBs than their counterparts with low social media technology use

    Social media and customer relationship management technologies: Influencing buyer-seller information exchanges

    Get PDF
    Highlights Social media and CRM technology aid salespeople in market sensing and customer-linking activities. Social media utilization enhance the competitive information collection abilities of the seller. CRM techpositively affects seller product information communication, which enablesbuyer information sharing intentions. Sellers capture value from buyers by CRM utilization. Seller experience has significant moderating and explanatory power regarding the use of sales technology. Abstract Due to the increasing array of sales technology, salespeople must understand how each application assists them. This study examines how business-to-business salespeople use different forms of sales technology to meet their boundary-spanning roles. Our research draws from social exchange theory and task-technology fit theory to test a model that examines how salespeople use CRM and social media technologies differentially to support competitive information collection, product information communication, and buyer information sharing. Dyadic data from industrial buyers and sellers is used to analyze the technology-behavior relationships. Our study\u27s results reveal social media use and CRM technology both positively influence buyer-seller information exchanges; however, each technology takes a distinct route to enable the information exchange between the buyer and the seller. The results also suggest that managers need to champion the use of both technology applications to their salesforce

    Intrinsic Gain in Self-Aligned Polysilicon Source-Gated Transistors

    Full text link

    Resting metabolic rate and lung function in wild offshore common bottlenose dolphins, Tursiops truncatus, near Bermuda

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 9 (2018): 886, doi:10.3389/fphys.2018.00886.Diving mammals have evolved a suite of physiological adaptations to manage respiratory gases during extended breath-hold dives. To test the hypothesis that offshore bottlenose dolphins have evolved physiological adaptations to improve their ability for extended deep dives and as protection for lung barotrauma, we investigated the lung function and respiratory physiology of four wild common bottlenose dolphins (Tursiops truncatus) near the island of Bermuda. We measured blood hematocrit (Hct, %), resting metabolic rate (RMR, l O2 ⋅ min-1), tidal volume (VT, l), respiratory frequency (fR, breaths ⋅ min-1), respiratory flow (l ⋅ min-1), and dynamic lung compliance (CL, l ⋅ cmH2O-1) in air and in water, and compared measurements with published results from coastal, shallow-diving dolphins. We found that offshore dolphins had greater Hct (56 ± 2%) compared to shallow-diving bottlenose dolphins (range: 30–49%), thus resulting in a greater O2 storage capacity and longer aerobic diving duration. Contrary to our hypothesis, the specific CL (sCL, 0.30 ± 0.12 cmH2O-1) was not different between populations. Neither the mass-specific RMR (3.0 ± 1.7 ml O2 ⋅ min-1 ⋅ kg-1) nor VT (23.0 ± 3.7 ml ⋅ kg-1) were different from coastal ecotype bottlenose dolphins, both in the wild and under managed care, suggesting that deep-diving dolphins do not have metabolic or respiratory adaptations that differ from the shallow-diving ecotypes. The lack of respiratory adaptations for deep diving further support the recently developed hypothesis that gas management in cetaceans is not entirely passive but governed by alteration in the ventilation-perfusion matching, which allows for selective gas exchange to protect against diving related problems such as decompression sickness.Funding for this project was provided by the Office of Naval Research (ONR YIP Award No. N000141410563, and Dolphin Quest, Inc. FHJ was supported by the Office of Naval Research (Award No. N00014-1410410) and an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies under the FP7 program of the EU (Agreement No. 609033)

    Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

    Get PDF
    Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior

    Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells

    Get PDF
    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1+/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly

    The FaceBase Consortium: A comprehensive program to facilitate craniofacial research

    Get PDF
    The FaceBase Consortium consists of ten interlinked research and technology projects whose goal is to generate craniofacial research data and technology for use by the research community through a central data management and integrated bioinformatics hub. Funded by the National Institute of Dental and Craniofacial Research (NIDCR) and currently focused on studying the development of the middle region of the face, the Consortium will produce comprehensive datasets of global gene expression patterns, regulatory elements and sequencing; will generate anatomical and molecular atlases; will provide human normative facial data and other phenotypes; conduct follow up studies of a completed genome-wide association study; generate independent data on the genetics of craniofacial development, build repositories of animal models and of human samples and data for community access and analysis; and will develop software tools and animal models for analyzing and functionally testing and integrating these data. The FaceBase website (http://www.facebase.org) will serve as a web home for these efforts, providing interactive tools for exploring these datasets, together with discussion forums and other services to support and foster collaboration within the craniofacial research community

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/
    corecore