89 research outputs found

    Predictors of paralysis in the rheumatoid cervical spine in patients undergoing total joint arthroplasty.

    Get PDF
    BACKGROUND: Rheumatoid arthritis is sometimes associated with radiographic evidence of instability of the cervical spine, most commonly an abnormal subluxation between vertebrae. When this instability compromises the space that is available for the spinal cord, it may be predictive of paralysis. However, the prevalence of radiographic signs of instability that are predictive of paralysis among patients with nonspinal orthopaedic manifestations of rheumatoid arthritis is unknown. METHODS: Radiographs of the cervical spine of patients with rheumatoid arthritis who had undergone total joint arthroplasty over a five-year period were retrospectively reviewed. The radiographs were evaluated for predictors of paralysis (a posterior atlantodental interval of\u3c14 \u3emm) and were compared with traditional parameters of instability (an anterior atlantodental interval of \u3e3 mm or subaxial subluxation of \u3e3 mm). RESULTS: Forty-nine of the sixty-five patients who were identified had flexion and extension lateral radiographs available for review. Only one of these patients had a posterior atlantodental interval of \u3c14 \u3emm, and only three had a space available for the cord that measuredcomparison, twenty patients had radiographic evidence of instability on the basis of traditional parameters. CONCLUSIONS: Although nearly one-half of the patients in the present study had radiographic evidence of cervical instability on the basis of traditional measurements, only four patients (8%) had a radiographic finding that was predictive of paralysis. Thus, while radiographic evidence of cervical instability was not infrequent in this population of patients who underwent total joint arthroplasty for rheumatoid arthritis, radiographic predictors of paralysis were much less common

    TOWARDS A FORMAT REGISTRY FOR ENGINEERING DATA

    Get PDF
    ABSTRACT There has been a great deal of interest recently in the problem of long term archiving of digital data. This is especially so in engineering design, where the CAD software tools evolve rapidly but the manufactured products themselves have much longer lifetimes whose support requires archived design data in a usable form. The ISO Open Archival Information Systems (OAIS) Reference Model is a widely used standard for digital archiving, with an essential piece of this model being a file format registry. A file format registry is a system for housing information about file formats that allows for correct interpretation, rendering, storage, and translation of digital files. Currently there exists no file format registry specifically for CAD file formats. This paper explains the purpose of a file format registry for CAD in the greater context of digital archiving, and then presents our approach to creating a CAD file format registry using the Resource Description Framework (RDF) language of the Semantic Web. By creating our file format registry in RDF, we allow archival systems to perform automated reasoning on the stored files. We hope that this paper will increase awareness of this element of engineering design repositories in the research community of this conference

    Mitochondrial genome sequence analysis: A custom bioinformatics pipeline substantially improves Affymetrix MitoChip v2.0 call rate and accuracy

    Get PDF
    BACKGROUND: Mitochondrial genome sequence analysis is critical to the diagnostic evaluation of mitochondrial disease. Existing methodologies differ widely in throughput, complexity, cost efficiency, and sensitivity of heteroplasmy detection. Affymetrix MitoChip v2.0, which uses a sequencing-by-genotyping technology, allows potentially accurate and high-throughput sequencing of the entire human mitochondrial genome to be completed in a cost-effective fashion. However, the relatively low call rate achieved using existing software tools has limited the wide adoption of this platform for either clinical or research applications. Here, we report the design and development of a custom bioinformatics software pipeline that achieves a much improved call rate and accuracy for the Affymetrix MitoChip v2.0 platform. We used this custom pipeline to analyze MitoChip v2.0 data from 24 DNA samples representing a broad range of tissue types (18 whole blood, 3 skeletal muscle, 3 cell lines), mutations (a 5.8 kilobase pair deletion and 6 known heteroplasmic mutations), and haplogroup origins. All results were compared to those obtained by at least one other mitochondrial DNA sequence analysis method, including Sanger sequencing, denaturing HPLC-based heteroduplex analysis, and/or the Illumina Genome Analyzer II next generation sequencing platform. RESULTS: An average call rate of 99.75% was achieved across all samples with our custom pipeline. Comparison of calls for 15 samples characterized previously by Sanger sequencing revealed a total of 29 discordant calls, which translates to an estimated 0.012% for the base call error rate. We successfully identified 4 known heteroplasmic mutations and 24 other potential heteroplasmic mutations across 20 samples that passed quality control. CONCLUSIONS: Affymetrix MitoChip v2.0 analysis using our optimized MitoChip Filtering Protocol (MFP) bioinformatics pipeline now offers the high sensitivity and accuracy needed for reliable, high-throughput and cost-efficient whole mitochondrial genome sequencing. This approach provides a viable alternative of potential utility for both clinical diagnostic and research applications to traditional Sanger and other emerging sequencing technologies for whole mitochondrial genome analysis

    Transiting extrasolar planetary candidates in the Galactic bulge

    Get PDF
    More than 200 extrasolar planets have been discovered around relatively nearby stars, primarily through the Doppler line shifts owing to the reflex motions of their host stars, and more recently through transits of some planets across the face of the host stars. The detection of planets with the shortest known periods, 1.2 to 2.5 days, has mainly resulted from transit surveys which have generally targeted stars more massive than 0.75 M_sun. Here we report the results from a planetary transit search performed in a rich stellar field towards the Galactic bulge. We discovered 16 candidates with orbital periods between 0.4 and 4.2 days, five of which orbit stars of 0.44 to 0.75 M_sun. In two cases, radial-velocity measurements support the planetary nature of the companions. Five candidates have orbital periods below 1.0 day, constituting a new class of ultra-short-period planets (USPPs), which occur only around stars of less than 0.88 M_sun. This indicates that those orbiting very close to more luminous stars might be evaporatively destroyed, or that jovian planets around lower-mass stars might migrate to smaller radii.Comment: To appear in October 5, 2006 issue of Natur

    Assessing mechanical integrity of spinal fusion by in situ endochondral osteoinduction in the murine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Historically, radiographs, micro-computed tomography (micro-CT) exams, palpation and histology have been used to assess fusions in a mouse spine. The objective of this study was to develop a faster, cheaper, reproducible test to directly quantify the mechanical integrity of spinal fusions in mice.</p> <p>Methods</p> <p>Fusions were induced in ten mice spine using a previously described technique of in situ endochondral ossification, harvested with soft tissue, and cast in radiolucent alginate material for handling. Using a validated software package and a customized mechanical apparatus that flexed and extended the spinal column, the amount of intervertebral motion between adjacent vertebral discs was determined with static flexed and extended lateral spine radiographs. Micro-CT images of the same were also blindly reviewed for fusion.</p> <p>Results</p> <p>Mean intervertebral motion between control, non-fused, spinal vertebral discs was 6.1 ± 0.2° during spine flexion/extension. In fusion samples, adjacent vertebrae with less than 3.5° intervertebral motion had fusions documented by micro-CT inspection.</p> <p>Conclusions</p> <p>Measuring the amount of intervertebral rotation between vertebrae during spine flexion/extension is a relatively simple, cheap (<$100), clinically relevant, and fast test for assessing the mechanical success of spinal fusion in mice that compared favorably to the standard, micro-CT.</p

    Monitoring of Regulatory T Cell Frequencies and Expression of CTLA-4 on T Cells, before and after DC Vaccination, Can Predict Survival in GBM Patients

    Get PDF
    PURPOSE: Dendritic cell (DC) vaccines have recently emerged as an innovative therapeutic option for glioblastoma patients. To identify novel surrogates of anti-tumor immune responsiveness, we studied the dynamic expression of activation and inhibitory markers on peripheral blood lymphocyte (PBL) subsets in glioblastoma patients treated with DC vaccination at UCLA. EXPERIMENTAL DESIGN: Pre-treatment and post-treatment PBL from 24 patients enrolled in two Phase I clinical trials of dendritic cell immunotherapy were stained and analyzed using flow cytometry. A univariate Cox proportional hazards model was utilized to investigate the association between continuous immune monitoring variables and survival. Finally, the immune monitoring variables were dichotomized and a recursive partitioning survival tree was built to obtain cut-off values predictive of survival. RESULTS: The change in regulatory T cell (CD3(+)CD4(+)CD25(+)CD127(low)) frequency in PBL was significantly associated with survival (p = 0.0228; hazard ratio = 3.623) after DC vaccination. Furthermore, the dynamic expression of the negative co-stimulatory molecule, CTLA-4, was also significantly associated with survival on CD3(+)CD4(+) T cells (p = 0.0191; hazard ratio = 2.840) and CD3(+)CD8(+) T cells (p = 0.0273; hazard ratio = 2.690), while that of activation markers (CD25, CD69) was not. Finally, a recursive partitioning tree algorithm was utilized to dichotomize the post/pre fold change immune monitoring variables. The resultant cut-off values from these immune monitoring variables could effectively segregate these patients into groups with significantly different overall survival curves. CONCLUSIONS: Our results suggest that monitoring the change in regulatory T cell frequencies and dynamic expression of the negative co-stimulatory molecules on peripheral blood T cells, before and after DC vaccination, may predict survival. The cut-off point generated from these data can be utilized in future prospective immunotherapy trials to further evaluate its predictive validity

    Mechanisms of the reaction pi^-p --> a^0_0(980)n --> p-^0 eta n at high energies

    Full text link
    The main dynamical mechanisms of the reaction πpa00(980)nπ0ηn\pi^-p \rightarrow a^0_0 (980)n \rightarrow \pi^0\eta n at high energies, currently investigated at Serpukhov and Brookhaven, are considered in detail. It is shown that the observed forward peak in its differential cross section can be explained within the framework of the Regge pole model only by the conspiring ρ2\rho_2 Regge pole exchange. The tentative estimates of the absolute πpa00(980)nπ0ηn\pi^-p \rightarrow a^0_0(980)n \rightarrow \pi^0\eta n reaction cross section at Plabπ=18P_{lab}^{\pi^-} = 18 GeV/c are obtained: σ200\sigma\approx200 nb and, in the forward direction, dσ/dt940d\sigma/dt\approx940 nb/GeV2^2. The contribution of the one pion exchange, which is forbidden by GG-parity and which can rise owing to the f00(980)a00(980)f^0_0(980)-a^0_0(980) mixing, is also estimate. A role of the Regge cuts in the non-flip helicity amplitude is briefly examined and a conclusion is made that the contributions of the cuts have to be inessential in comparison with the conspiring ρ2\rho_2 Regge pole exchange.Comment: 14 pages, Latex, 2 ps figure

    Inherited variation in immune genes and pathways and glioblastoma risk

    Get PDF
    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) and a subset of 6029 SNPs in 893 genes from 531 cases and 1782 controls from MD Anderson (MDA). To further assess consistency of SNP-level associations, we also compared data from the UK (266 cases and 2482 controls) and the Mayo Clinic (114 cases and 111 controls). Although three correlated epidermal growth factor receptor (EGFR) SNPs were consistently associated with glioblastoma in all four data sets (Mantel–Haenzel P values = 1 × 10−5 to 4 × 10−3), independent replication is required as genome-wide significance was not attained. In gene-level analyses, eight immune function genes were significantly (minP < 0.05) associated with glioblastoma; the IL-2RA (CD25) cytokine gene had the smallest minP values in both UCSF (minP = 0.01) and MDA (minP = 0.001) data sets. The IL-2RA receptor is found on the surface of regulatory T cells potentially contributing to immunosuppression characteristic of the glioblastoma microenvironment. In pathway correlation analyses, cytokine signaling and adhesion–extravasation–migration pathways showed similar associations with glioblastoma risk in both MDA and UCSF data sets. Our findings represent the first systematic description of immune genes and pathways that characterize glioblastoma risk

    The Mount Sinai Prebiopsy Risk Calculator for Predicting any Prostate Cancer and Clinically Significant Prostate Cancer: Development of a Risk Predictive Tool and Validation with Advanced Neural Networking, Prostate Magnetic Resonance Imaging Outcome Database, and European Randomized Study of Screening for Prostate Cancer Risk Calculator

    Get PDF
    Background: The European Association of Urology guidelines recommend the use of imaging, biomarkers, and risk calculators in men at risk of prostate cancer. Risk predictive calculators that combine multiparametric magnetic resonance imaging with prebiopsy variables aid as an individualized decision-making tool for patients at risk of prostate cancer, and advanced neural networking increases reliability of these tools.Objective: To develop a comprehensive risk predictive online web-based tool using magnetic resonance imaging (MRI) and clinical data, to predict the risk of any prostate cancer (PCa) and clinically significant PCa (csPCa) applicable to biopsy-naive men, men with a prior negative biopsy, men with prior positive low-grade cancer, and men with negative MRI.Design, setting, and participants: Institutional review board-approved prospective data of 1902 men undergoing biopsy from October 2013 to September 2021 at Mount Sinai were collected.Outcome measurements and statistical analysis: Univariable and multivariable analyses were used to evaluate clinical variables such as age, race, digital rectal examination, family history, prostate-specific antigen (PSA), biopsy status, Prostate Imaging Reporting and Data System score, and prostate volume, which emerged as predictors for any PCa and csPCa. Binary logistic regression was performed to study the probability. Validation was performed with advanced neural networking (ANN), multi-institutional European cohort (Prostate MRI Outcome Database [PROMOD]), and European Randomized Study of Screening for Prostate Cancer Risk Calculator (ERSPC RC) 3/4.Results and limitations: Overall, 2363 biopsies had complete clinical information, with 57.98% any cancer and 31.40% csPCa. The prediction model was significantly associated with both any PCa and csPCa having an area under the curve (AUC) of 81.9% including clinical data. The AUC for external validation was calculated in PROMOD, ERSPC RC, and ANN for any PCa (0.82 vs 0.70 vs 0.90) and csPCa (0.82 vs 0.78 vs 0.92), respectively. This study is limited by its retrospective design and over-estimation of csPCa in the PROMOD cohort.Conclusions: The Mount Sinai Prebiopsy Risk Calculator combines PSA, imaging and clinical data to predict the risk of any PCa and csPCa for all patient settings. With accurate validation results in a large European cohort, ERSPC RC, and ANN, it exhibits its efficiency and applicability in a more generalized population. This calculator is available online in the form of a free web-based tool that can aid clinicians in better patients counseling and treatment decision-making.Patient summary: We developed the Mount Sinai Prebiopsy Risk Calculator (MSP-RC) to assess the likelihood of any prostate cancer and clinically significant disease based on a combination of clinical and imaging characteristics. MSP-RC is applicable to all patient settings and accessible online. Crown Copyright (C) 2022 Published by Elsevier B.V. on behalf of European Association of Urology.</p
    corecore