256 research outputs found

    Differential changes in human perception of speed due to motion adaptation

    No full text
    Visual systems adapt to the prevailing image conditions. This improves the ability to discriminate between two similar stimuli but has the side effect that veridical perception is degraded. For example, prolonged driving at 100 km/h may reduce the perceived speed to 80 km/h but improve the sensitivity to changes in the prevailing speed. Here we use radially expanding flow fields with a wide combination of adapt and test speeds to study human speed perception. Adaptation at speeds higher than the test always attenuates perceived speed, whereas adaptation at low and testing at high speeds increases perceived speed. We show that adaptation is stronger (i.e., post-adaptation speeds are perceived as slower) when the dots in the expanding flow field accelerate towards the periphery rather than traveling at constant speeds. We also show that speed discriminability is reduced following adaptation to low speeds when tested at high speeds and increased when the test speed is at or below prior adaptation speeds. We conclude that the relative speeds of the adaptation and test patterns are important parameters governing speed-related adaptation effects in the human brain

    The influence of restricted orientation rearing on map structure in primary visual cortex

    Get PDF
    Visual experience is critical to the development of the structure of the primary visual cortex and, in turn, normal functional vision. The primary visual cortex contains maps of multiple features of the visual input, and these maps are characterised by specific types of geometric relationships. Manipulations of the visual environment during development in animals such as ferrets, cats and monkeys provide an opportunity to probe the rules governing map formation via their effect on these relationships. Here we use a computational model of map formation based on dimension-reduction principles to predict the effect on map relationships of presenting only a single orientation to one eye and the orthogonal orientation to the other eye. Since orientation preference and ocular dominance are now tightly coupled one might expect orientation and ocular dominance contours to lose their normally orthogonal relationship and instead run parallel to each other. However, surprisingly, the model predicts that orthogonal intersection can sometimes be preserved in this case. The model also predicts that orientation pinwheels can migrate from the centre to the borders of ocular dominance columns, and that the wavelengths of the ocular dominance and orientation maps can become coupled. These predictions provide a way to further test the adequacy of dimension reduction principles for explaining map structure under perturbed as well as normal rearing conditions, and thus allow us to deepen our understanding of the effect of the visual environment on visual cortical development

    Sparse coding on the spot: Spontaneous retinal waves suffice for orientation selectivity

    Get PDF
    Ohshiro, Hussain, and Weliky (2011) recently showed that ferrets reared with exposure to flickering spot stimuli, in the absence of oriented visual experience, develop oriented receptive fields. They interpreted this as refutation of efficient coding models, which require oriented input in order to develop oriented receptive fields. Here we show that these data are compatible with the efficient coding hypothesis if the influence of spontaneous retinal waves is considered. We demonstrate that independent component analysis learns predominantly oriented receptive fields when trained on a mixture of spot stimuli and spontaneous retinal waves. Further, we show that the efficient coding hypothesis provides a compelling explanation for the contrast between the lack of receptive field changes seen in animals reared with spot stimuli and the significant cortical reorganisation observed in stripe-reared animals

    Edge Detection in Landing Budgerigars (Melopsittacus undulatus)

    Get PDF
    Background: While considerable scientific effort has been devoted to studying how birds navigate over long distances, relatively little is known about how targets are detected, obstacles are avoided and smooth landings are orchestrated. Here we examine how visual features in the environment, such as contrasting edges, determine where a bird will land. Methodology/Principal Findings: Landing in budgerigars (Melopsittacus undulatus) was investigated by training them to fly from a perch to a feeder, and video-filming their landings. The feeder was placed on a grey disc that produced a contrasting edge against a uniformly blue background. We found that the birds tended to land primarily at the edge of the disc and walk to the feeder, even though the feeder was in the middle of the disc. This suggests that the birds were using the visual contrast at the boundary of the disc to target their landings. When the grey level of the disc was varied systematically, whilst keeping the blue background constant, there was one intermediate grey level at which the budgerigar's preference for the disc boundary disappeared. The budgerigars then landed randomly all over the test surface. Even though this disc is (for humans) clearly distinguishable from the blue background, it offers very little contrast against the background, in the red and green regions of the spectrum. Conclusions: We conclude that budgerigars use visual edges to target and guide landings. Calculations of photoreceptor excitation reveal that edge detection in landing budgerigars is performed by a color-blind luminance channel that sums the signals from the red and green photoreceptors, or, alternatively, receives input from the red double-cones. This finding has close parallels to vision in honeybees and primates, where edge detection and motion perception are also largely color-blind

    Prototype constructions in early language acquisition

    Get PDF
    In this paper we bring together several lines of cross-linguistic research to demonstrate the role of prototypicality in young children’s acquisition of the transitive construction. Much research has shown that young children are slow to form abstract constructions because they fail to see the more general applicability of syntactic markers such as word order and case marking. Here we attempt to explain this fact by investigating the nature of the language children do and do not hear, specifically, the reliability and availability of the linguistic cues they are exposed to. We suggest that constructions redundantly marked with multiple cues could have a special status as a nucleus around which the prototype forms—which makes it difficult for them to isolate the functional significance of each cue. The implications of this view for language acquisition are discussed within a usage-based framework

    A Three-Dimensional Atlas of the Honeybee Neck

    Get PDF
    Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning combined with manual registration and segmentation of images to develop a comprehensive and detailed three-dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of interpreting and comprehending insect anatomy and neuroanatomy
    • …
    corecore