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Abstract  

Phototoxicity-induced pain is a major clinical problem triggered by light acting on 

photosensitising drugs or endogenous porphyrins, notably protoporphyrin IX (PpIX), an 

intermediary in heme biosynthesis. PpIX accumulates in individuals with erythropoietic 

protoporphyria and is elevated during photodynamic therapy subsequent to application of 5-

aminolevulinic acid (ALA). Pain occurs during irradiation of PpIX and responds poorly to 

conventional analgesics. Our objective was to develop a model of PpIX phototoxicity pain and 

investigate the potential of menthol as an analgesic. Application of ALA to the tails of C57 black 

and SWISS white mice caused PpIX accumulation and nociception during irradiation (630 nm at 

3.7 J/cm2). Despite similar PpIX accumulation, C57 mice exhibited less pain behavior compared 

to SWISS mice due to light absorption by pigmentation. Irradiation of ALA-treated dorsal root 

ganglion neurons caused phototoxicity-evoked action potentials (APs) in both mouse strains. 

The antioxidant L-tryptophan increased the light dose required to elicit such APs. By contrast, 

the addition of keratinocytes to neuronal cultures decreased the threshold for APs, suggesting a 

requirement for proliferating cells. Inhibition of fatty acid amide hydrolase, selective antagonism 

of TRPV1 or the application of lidocaine or its quaternary derivative QX-314, reduced AP 

frequency, while antagonism of TRPA1 had no effect. These results suggest that products of 

singlet O2-mediated lipid peroxidation trigger nociceptor activation via TRPV1. Menthol 

inhibited phototoxicity-evoked APs and reduced pain behavior when applied topically to mice. 

These findings suggest that menthol might provide pain relief in patients experiencing PpIX-

phototoxicity pain caused by photodynamic therapy or erythropoietic protoporphyria.  
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1. Introduction 

Phototoxicity is relatively common in patients prescribed photoactive drugs and is the basis for 

photodynamic therapy (PDT) [19,27,28,38]. Phototoxicity also occurs in the light-exposed skin of 

patients suffering from erythropoietic protoporphyria (EPP) in whom the photoactive molecule 

protoporphyrin IX (PpIX) accumulates [18,36]. When exposed to light, fluorescent molecules 

generate reactive singlet oxygen (1O2) from triplet oxygen by a type two reaction and free 

radicals, such as superoxide, by a type one reaction [12]. Endogenous antioxidants help 

overcome cellular damage, but this protection is overwhelmed during phototoxicity leading to 

cell death [22].  

 

PpIX accumulation is normally restricted by the rate-limiting step at aminolevulinic acid (ALA) 

synthase, a mitochondrial enzyme within the heme pathway and ferrochelatase, which rapidly 

inserts ferrous iron into PpIX thereby limiting its phototoxic potential. Autosomal recessive loss-

of-function mutations in the ferrochelatase gene, usually in combination with a low-expressing 

polymorphic allele, lead to the most common erythropoietic protoporphyria [2]. Protoporphyria 

can also be caused by rare gain-of-function mutations in the erythroid-specific ALA synthase 

gene [13].  

 

PpIX-phototoxicity is exploited therapeutically in the controlled delivery of topical PDT to treat 

non-melanoma skin cancers, such as basal cell carcinoma (BCC), pre-cancers and other diverse 

skin diseases including actinic keratosis (AK) [27,28]. PpIX accumulates following application of a 

pro-drug, such as ALA. The generation of 1O2 during irradiation destroys diseased tissue. 

However, a burning sensation typically occurs and pain is the most common adverse effect of 

PDT [19,27,28,38]. Pain can be mild to severe, displaying marked individual variability.  

 

Blue light (405 nm), often used during PDT for superficial AK, effectively photoactivates PpIX. A 

recent study demonstrated that 405 nm irradiation itself causes pain associated with activation 

of TRPA1 and TRPV1 channels in dorsal root ganglion (DRG) neurons, which was enhanced by 

elevated PpIX [1]. Blue light has limited tissue penetration and more deeply penetrating red 

light (630 nm) is often used as an alternative during PDT. Red light alone does not have any 

effects, however, in the presence of PpIX-mediated photosensitization, the combination causes 

pain of unknown mechanism [38].  
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Approaches for PDT pain management such as light-interruption, topical local anesthetics, oral 

analgesics and cooling, have had limited success [19,27,28,38]. There is a need for more 

effective PDT pain relief and experimental models are required in order to develop new 

approaches.  

 

Despite its known analgesic properties and wide availability, topical menthol has not previously 

been investigated as a potential means of pain prevention or relief during PDT. There are a 

number of reasons why menthol might be a good choice. It evokes a cooling sensation through 

activation of TRPM8 receptors [4]. This might be advantageous as skin cooling causes a small 

reduction in PDT pain [35].  Furthermore, menthol directly inhibits voltage-activated Na+ 

channel activity and increases paw withdrawal latency from noxious heat [21,30].  

 

We developed a mouse model of pain and hyperalgesia evoked by PDT with red light and used 

DRG neurons to examine the mechanisms involved in PDT phototoxicity-evoked action 

potentials and the potential role of topical menthol for PpIX phototoxicity pain prevention. 
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2. Methods 

2.1. Cell culture  

Dorsal root ganglia were harvested from NIH SWISS and C57BL/6 mice (postnatal day 8 to 10). 

Cells were dissociated both enzymatically (collagenase/dispase (4 mg/ml) and papain (40 

units/ml)) and physically by trituration. Neurons were plated onto poly-D-lysine- and laminin-

coated coverslips (13 mm diameter) in the center of 35 mm dishes (VWR, Leicestershire, UK), as 

described previously [37]. Cells were cultured in Dulbecco's modified Eagle medium (DMEM) / F-

12 nutrient mixture (DMEM/F-12), supplemented with heat-inactivated fetal bovine serum (FBS; 

10%), nerve growth factor (NGF; 50 ng/ml) and penicillin (100 µg/ml) and streptomycin (100 

units/ml) (Pen/Strep) at 37oC and 5% CO2. DRG cells were maintained in culture for up to 15 

days. HaCaT and HEK cells were maintained in DMEM supplemented with FBS (5%), non-

essential amino acids (1%) and Pen/Strep at 37oC and 5% CO2. For combined cultures, HaCaT 

cells were plated onto the poly-D-lysine- and laminin- coated coverslips on the day preceding 

DRG dissociation. Harvested DRG cells were plated on HaCaT-cell coated coverslips. Co-cultures 

were incubated at 37oC and 5% CO2 for a further 3 days prior to recording. For 

electrophysiological studies, HEK cells were seeded in 35 mm culture dishes. cDNAs encoding rat 

TRPV1 receptors (Origene, Rockville, MD, USA) or rat TRPA1 receptors (a gift from Dr Gerard 

Ahern, Georgetown University) were transfected into HEK cells using calcium phosphate 

precipitation. Reagents were obtained from Invitrogen (Paisley, UK) or Sigma-Aldrich (Dorset, 

UK). 

 

2.2. Flow cytometry  

Cells were seeded onto 60 mm dishes and incubated in media in the absence or presence of ALA 

(1 mM; Sigma-Aldrich, Dorset, UK) for 4 h at 37oC and 5% CO2. Cells were washed with 

phosphate buffered saline (PBS) and harvested using a non-enzymatic cell dissociation solution 

(Sigma-Aldrich, Dorset, UK). Following centrifugation at 3000 rpm for 5 min, cells were 

resuspended in PBS. Fluorescence mediated by PpIX was measured using flow cytometry. 

10,000 cells per sample were analyzed on a FACScan flow cytometer, using a 15-mW blue (488 

nm) argon laser to excite PpIX. Emitted fluorescence was detected at ≥650nm. Data were 

acquired using Cell Quest Pro 5.2.1 (Becton Dickinson Immunocytochemistry Systems, California, 

USA). Analysis was performed using FlowJo 9.7.5 software (www.treestar.com). Regions of 

interest containing healthy cell populations were identified on the basis of forward and side 
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light scatter enabling the subsequent production of fluorescence histograms, as described 

previously [37]. 

 

2.3. PpIX Irradiation  

For in vitro experiments, cells were incubated (4-7 h) in the dark, in media with or without ALA 

(1 mM). The ALA incubation time is in keeping with the conditions used in patients, where ALA 

would usually be applied for 3-6 h. Cells were irradiated (20 min) using a diode laser at 630 nm, 

with an irradiance of 96 mW/cm2, corresponding to a total light dose of 115.2 J/cm2. Action 

potential responses occurred with light doses of  6 J/cm2 (see Results). For in vivo studies, 630-

nm laser irradiation lasted 60 s, with an irradiance of 62 mW/cm2, corresponding to a light dose 

of 3.7 J/cm2. The light dose required to produce reliable pain behaviour in SWISS mice was 

determined empirically. The light doses are within the range used clinically during PDT [14]. 

 

2.4. Electrophysiology  

The patch-clamp technique was used to record whole-cell, and outside-out or cell-attached 

patch currents (voltage-clamped at 0 and -60 mV, respectively), and action potentials (current-

clamp). Borosilicate glass recording electrodes when filled with intracellular solution had 

resistances of 1.8 - 3 MΩ. For excised patch recordings the electrode solution contained (in 

mM): 140 CsCl, 2 MgCl2, 11 EGTA, 3 Mg-ATP, and 10 HEPES (pH 7.4 with CsOH). The extracellular 

solution contained (in mM): 140 NaCl, 4.7 KCl, 1.2 MgCl2, 2.5 CaCl2, 10 glucose and 10 HEPES 

(pH 7.4 with NaOH). The extracellular solution was used within the electrode during cell-

attached recordings. Current-clamp recordings utilized an electrode solution containing (in 

mM): 140 potassium gluconate, 10 NaCl, 2.8 KCl, 2 MgCl2, 0.1 CaCl2, 1.1 EGTA and 10 HEPES (pH 

7.4 with KOH). The extracellular solution was the same as that used in voltage-clamp recordings. 

Current-clamp data were corrected for the calculated liquid junction potential. 

Electrophysiological recordings were performed under subdued lighting. The diode laser was 

used to examine the effects of irradiation under control conditions or following incubation with 

ALA (1 mM). All electrophysiological data were recorded using an Axopatch 200A amplifier 

(Molecular Devices, CA, USA). Data were low pass filtered at 2 kHz, digitised at 8 kHz using a 

Digidata 1322A interface, acquired and analysed using pClamp 10.2 software (from Molecular 

Devices). Action potentials were detected by the threshold method and verified by visual 

inspection. Instantaneous action potential frequencies were determined and bursts were 

defined as >5 consecutive events with an instantaneous frequency >0.1 Hz. The latency to 
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response was determined as the time taken for irradiation to generate a burst of action 

potentials. The frequency of action potentials was determined during the entire 1200 s 

irradiation.    

 

2.5. Cell viability assay  

Viability was assessed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide 

(MTT). Control or PDT treated cells were incubated (2 h) in media containing 0.6 mg/ml MTT. 

Cells were washed with PBS and images digitally captured using a Moticam 2500 camera with 

Motic Images Plus 2.0 software (Microscopy Supplies and Consultants Ltd, Fife, UK). 

 

2.6. Confocal imaging  

Experiments were performed in the Light Microscopy Core Facility. PpIX fluorescence was 

visualised in DRG neuronal cultures using confocal microscopy. DRG cultures were treated with 

ALA (1 mM for 4 h). Cells were then examined under a Leica TCS SP-5 confocal microscope 

(Leica, Newcastle, UK) at 40x magnification in DMEM lacking phenol red. PpIX was excited at 

405 nm and the emitted fluorescence was collected between 610 and 650 nm.  

 

2.7. Behavioral Studies  

Mice were bred, maintained and housed in the Ninewells Hospital Medical Resource Unit in 

accordance with the University of Dundee’s Ethics Committee and UK Home Office regulations, 

with an appropriate project license. They had access to food and water ad libitum with 12 hour 

cycles of light and dark, the temperature was maintained between 19 and 21°C. All experiments 

were performed in the light phase. Studies were performed in the Behavioural Neuroscience 

Core Facility. NIH SWISS and C57BL/6 mice were habituated to handling 3 days prior to the 

commencement of behavioral studies. Soft white paraffin (50 mg; vehicle) or ALA (20% w/w; 

Mandeville Medicines, Buckinghamshire, UK) cream was applied to tails. Mice were kept in 

darkness for 4 h prior to irradiation and behavioral studies were conducted under subdued 

lighting. As described previously [20], laser diode fluorescence spectroscopy was used to 

confirm the conversion of ALA uptake to PpIX. Light at a wavelength of 405 nm was used to 

excite PpIX within mouse tails. Emitted fluorescence was acquired onto a PC for analysis 

(LabVIEW software, National Instruments, London, UK). PpIX-mediated fluorescence was 

detected between 600-750 nm, with peak fluorescence at 634 nm. Measurements from human 

forearm were performed alongside mouse measurements for comparison. In some cases mouse 
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PpIX fluorescence was normalised to that of human PpIX fluorescence acquired on the same day 

(expressed as % fluorescent units (FU)). Tails were exposed to light emitted from a diode laser 

(630 nm, irradiance 62 mW/cm2, 60 s, light dose 3.72 J/cm2), in order to assay PpIX phototoxicity 

pain. Pain behavior was assayed by measuring the time spent tail lifting, holding and licking the 

tail within 60 s following laser exposure. Experiments examining the potential analgesic action 

of menthol were blinded. In order to habituate animals and investigators to menthol odour, a 

vapour source was present throughout the period of these experiments. Aqueous cream (0.4 g) 

or menthol (2% or 16%) was applied to tails 10 min prior to irradiation. For studies examining 

tail withdrawal latencies tails were exposed to temperatures ranging from 37 – 53oC.  

 

2.8. Temperature measurements  

The laser-induced temperature increase within the recording chamber was determined using a 

digital thermo-hygrometer (VWR, Leighton Buzzard, UK). The temperature was recorded every 

30 s for the duration of irradiation. An infrared thermoIMAGER 160 camera and TIM Connect 

software (Micro-Epsilon UK Ltd, Birkenhead, UK) were used to determine the effect of laser 

irradiation on mouse tail temperature recorded continuously over a period of 60 s.   

 

2.9. Statistical analysis  

Data are represented as mean ± standard error of mean (SEM). Statistical analyses were 

performed using IBM SPSS 22. Analyses of tail withdrawal data were performed using the 

Wilcoxon signed rank test or the Kruskall Wallis test. Other pairwise analyses of means were 

performed using the t-test. One-way or two-way ANOVA were used to analyse multiple groups, 

as appropriate. Multiple comparison corrections were performed using either Dunnett’s or 

Tukey’s correction for one-way ANOVA, or Bonferroni’s correction for two-way ANOVA. 

Correlation between PpIX emission and pain behaviour was performed using a Pearson 

correlation test. Exact p values are reported where possible (except when p < 0.0001) and data 

were considered statistically significant when p < 0.05. 

 
2.10. Drug application  

For in vitro experiments, drugs, made fresh from stocks on the day of experimentation, were 

applied either to the bath prior to irradiation (AMG-9810, HOE140, AA-5-HT, PF-3845, lidocaine, 

QX-314 and menthol), or focally by pressure ejection (PicoSpritzer II, General Valve Corp., 

Fairfield, NJ, USA) from a glass micropipette (capsaicin and QX-314). Drug application to outside 
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out patches of HEK cells containing TRPV1 receptors was achieved using the three-pipe 

Perfusion Fast-Step system (Warner Instruments, CA, USA), as described previously [3]. Menthol 

cream (2% and 16%) was made fresh on the day of experimentation. Menthol was dissolved in 

ethanol (100%) before mixing into aqueous cream. The vehicle consisted of the equivalent 

volume of ethanol mixed into aqueous cream.  
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3. Results 

3.1. PDT-induced pain behavior in mice 

We examined the effect of laser irradiation (630 nm, 3.7 J/cm2) and ALA applied topically (4-6 h) 

on the tails of NIH SWISS white mice and C57BL/6 black mice. Neither topical ALA (SWISS; n = 

35; C57; n = 17; data not shown), nor laser irradiation alone (SWISS; n = 30; C57; n = 10), caused 

discernible pain behaviour (see Methods) in either mouse strain (Fig. 1A). The average duration 

of pain behavior increased from 0.4 ± 0.2 s (n = 30) in vehicle treated SWISS mice to 20 ± 3 s (n = 

30) in ALA treated mice during 60 s following laser irradiation of their ALA treated tails (Fig. 1A). 

Following ALA and laser irradiation, 5 of 10 C57 mice also displayed pain behaviour. The 

duration of pain behaviour increased from none in vehicle treated C57 mice (n = 10) to 4 ± 2 s (n 

= 10) in ALA treated mice. In both strains pain behavior ceased within 5 minutes suggesting that 

the underlying pain was acute and transient. 

 

We compared the influence of ALA and vehicle treatment on laser irradiated tails between 

SWISS and C57 mice using a two-way ANOVA. The analysis revealed a significant difference in 

both tail treatment (vehicle vs ALA; F1,76 = 22.1; p < 0.0001) as well as the strain of mouse (SWISS 

vs C57; F1,76 = 11.2; p = 0.001) on pain behavior. There was also a statistically significant 

interaction between tail treatment and mouse strain (F1,76 = 10.2; p = 0.002). This suggests that 

the increase in duration of pain behavior following ALA and laser treatment differed depending 

on the strain of mouse used. A simple effects comparison using the Bonferroni correction 

revealed that the pain behavior exhibited by SWISS mice was significantly (p < 0.0001) more 

prolonged than that of C57 mice following treatment with ALA (Fig. 1A). Therefore the data 

suggest that SWISS mice are more susceptible to PDT-induced pain. 

 

3.2. Pigmentation reduces PpIX-mediated fluorescence and associated pain 

We observed PpIX emission non-invasively using fluorescence spectroscopy with fibre-optic 

coupled laser excitation at 405 nm (Fig. 1B). Compared to vehicle treated control mouse tails, 

the characteristic PpIX emission spectrum was enhanced by ALA treatment to levels similar to 

those achieved in the ALA treated human forearm (Fig. 1B). We quantified PpIX emission by 

measuring the peak fluorescence at 634 nm (see Methods) and normalising this value to that 

measured from a human forearm (as % control fluorescence units; FU). PpIX emission was 

evident in the ALA treated tails of both C57 and SWISS mice, following laser irradiation (Fig. 1C). 

By contrast, mice treated with vehicle exhibited negligible PpIX emission (Fig. 1C). Both C57 
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mice and SWISS mouse tails showed increased PpIX emission following ALA treatment. 

However, similar to the pain behavior data (Fig. 1A), PpIX fluorescence emission from ALA 

treated tails of C57 mice was less (only ~25%) compared to SWISS mouse tails (Fig. 1C). We 

therefore analysed the PpIX fluorescence emission data using a two-way ANOVA. Our analysis 

revealed, like the pain behaviour above, that both treatment (F1,100 = 56.8) and mouse strain 

(F1,100 = 23.2) significantly influenced PpIX emission (p < 0.0001 for both). We also found a 

significant interaction between tail treatment and mouse strain (F1,100 = 19.1; p < 0.0001). This 

suggests that the increase in PpIX emission differs following ALA and laser treatment, depending 

on mouse strain. Indeed, a simple effects comparison with a Bonferroni correction revealed the 

difference in PpIX emission between the tails of SWISS and C57 mice to be significant (p < 

0.0001), following ALA treatment (Fig. 1C). Irradiation using a Wood’s lamp also revealed 

greater visible fluorescence emission from ALA treated tails of SWISS mice compared to those of 

C57 mice (Supplemental Fig. 1). In addition to the tails, fluorescence was observed in the paws, 

noses and ears of both mouse strains indicating the systemic accumulation of PpIX.  

 

Pigmentation in C57 mice may absorb irradiation leading to reduced PpIX fluorescence. This 

could account for the lower level of PpIX-irradiation pain (Fig. 1A). Pigmentation is greatest in 

the ears and tails of C57 mice, with lower levels in their paws. We therefore compared PpIX 

emission for each of these tissues following treatment of tails with ALA in C57 and SWISS mice. 

Consistent with a role for pigmentation in the diminished PpIX fluorescence of C57 tails, we 

found a significant (p = 0.006; t-test) difference in PpIX emission from the ears between C57 and 

SWISS mice, in which visual inspection revealed a clear difference in pigmentation 

(Supplemental Fig. 1), but no significant difference (p = 0.12; t-test) in the paws, in which neither 

strain exhibited obvious pigmentation (Fig. 1D). We further explored a role for pigmentation in 

PpIX emission, by applying black ink to the tails of SWISS mice. We compared PpIX emission 

from ALA treated tails from C57, SWISS and black ink stained SWISS mice tails. A one-way 

ANOVA revealed a significant difference (F2,12 = 82.7; p < 0.0001) between PpIX emission (Fig. 

1D). A post-hoc Dunnett’s comparison showed that both C57 mice tails, and black ink stained 

SWISS mice tails had significantly lower (p < 0.0001) PpIX emission than control SWISS mice tails 

(Fig. 1D). Taken together our data are consistent with the hypothesis that pigmentation absorbs 

irradiation, leading to lower PpIX fluorescence emission and, in turn, less pain behavior (Fig. 1A). 
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The in vivo data demonstrate that neither PpIX production nor 630-nm irradiation alone is 

sufficient to generate pain in mice. By contrast, PpIX fluorescence evoked by irradiation was 

associated with quantifiable pain behavior. Although PpIX fluorescence was required for pain 

behavior, there was no correlation (p = 0.95; Pearson r coefficient = 0.013) between the level of 

PpIX fluorescence emission and the extent of pain behavior (Fig. 1E). Having established that 

SWISS mice exhibited robust PDT pain following ALA treatment, subsequent behavioral 

experiments were performed using this approach. 

 

3.3. PpIX phototoxicity causes thermal hyperalgesia 

PpIX phototoxicity pain in humans is described as a burning sensation implicating sensitisation 

or activation of thermal nociceptive pathways [19,27,28,38]. We explored this by investigating 

the effect of PpIX irradiation on subsequent tail withdrawal from heated water. Baseline 

thermal withdrawal latencies were established by tail immersion in water heated to between 

37oC and 53oC (Supplementary Fig. 2). At 53oC the average tail withdrawal latency was 6 ± 2 s (n 

= 15), with 14 of 15 mice withdrawing within less than 30 s. An intermediate tail withdrawal 

latency of 24 ± 2 s (n = 15) occurred with water at 48oC, with 9 of 15 mice withdrawing in <30 s. 

This temperature was chosen to examine the effects of PpIX irradiation on thermal sensitivity. 

We subsequently examined the tail withdrawal latencies of mice treated with vehicle cream 

with laser irradiation, ALA cream without laser irradiation and ALA cream with laser irradiation. 

The mean tail withdrawal latencies are summarised in Figure 1F. A Kruskall-Wallis test revealed 

significant (p = 0.018) differences in tail withdrawal latencies (Fig. 1F). Post-hoc comparisons 

revealed significant (p = 0.029) reduction in tail withdrawal latency in mice exposed to both ALA 

cream and laser irradiation versus those exposed to vehicle cream and laser (Fig. 1F). 10 of 15 

mice responded in this group. No changes in tail withdrawal latencies were observed in mice 

exposed to irradiation only (n = 15), or ALA cream only (n = 5; Fig. 1F). A PDT-induced reduction 

in withdrawal latency, without an obvious change in the proportion of mice responding, is 

consistent with a heightened thermal pain response (hyperalgesia).  

 

3.4. PpIX phototoxicity evokes action potentials in DRG neurons  

Primary afferent neurons within dorsal root ganglia (DRG) transmit nociceptive pain from 

peripheral sites, such as the tail, to the spinal cord. Confocal images of DRG cultures reveal PpIX 

mediated fluorescence in cells after ALA (1 mM) treatment for 4 h (Fig. 2A). Flow cytometry 

using dissociated DRG cultures revealed that cells treated with ALA (1 mM for 4 h) produced 
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PpIX fluorescence emission that was not seen in untreated cells (Fig. 2A). These data 

demonstrate that ALA, when applied directly, leads to the production of PpIX in DRG cultures. 

We examined responses of small DRG neurons (<25 m) to ALA either alone or in combination 

with laser irradiation (630 nm) using the cell attached configuration to monitor action 

potentials. This approach preserves the intracellular milieu while action potentials are 

monitored as a combination of resistive and capacitive currents [15]. Spontaneous action 

potentials occurred very rarely in recordings from SWISS and C57 DRG neurons (grown for 1-15 

days in vitro) under control conditions or in recordings from neurons exposed to ALA (1 mM,  4-

7 h)  prior to irradiation (Fig. 2B, C). By contrast, during laser irradiation (630 nm) neurons from 

both mouse strains exposed to ALA exhibited bursts of frequent action potentials (Fig. 2B, C). 

DRG neurons from SWISS and C57 mice exhibited similar responses to PpIX irradiation. 

Subsequent in vitro experiments were performed using DRG neurons from C57 mice.  

 

While 97% of neurons responded to PpIX irradiation (day 4-15 in vitro), there was considerable 

variability in the latency to the first burst of action potentials (486 ± 20 s; n = 135), which 

equates to a mean light dose of 47 ± 2 J/cm2 required to evoke a response during the 1200 s 

laser exposure (total light dose = 115 J/cm2). The instantaneous frequency of action potentials 

was 11.6 ± 1.3 Hz (day 7 in vitro). The mean frequency of firing during the entire period of 

irradiation was 0.23 ± 0.03 Hz. Interestingly, despite the known cellular toxicity of PpIX 

irradiation, resulting from the release of ROS [41], most DRG neurons survived the full 1200 s of 

laser exposure. 

 

Using the whole-cell current-clamp recording configuration we examined the effects on 

membrane potential of ALA and irradiation either alone or in combination (Fig. 2D). DRG 

neurons exhibited infrequent spontaneous action potentials under control conditions. Neither 

ALA treatment (-57 ± 3 mV, n = 7) nor laser irradiation alone (-60 ± 3 mV, n = 5) affected the 

resting membrane potential or frequency of spontaneous action potentials (Fig. 2D). However, 

laser irradiation of DRG neurons treated with ALA (4-7 h) led to a sustained depolarisation (of 9 

± 1 mV, n = 3) and the appearance of frequent action potentials (Fig. 2D). 

Taken together, these in vitro data demonstrate that neither PpIX production nor laser 

irradiation alone is sufficient to generate action potentials in nociceptive neurons. However, a 

combination of the two leads to depolarization of neurons initiating bursts of action potentials.   
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3.5. Singlet O2 participates in phototoxicity-evoked excitation of DRG neurons 

We investigated the possible involvement of ROS in the activation of nociceptive neurons using 

L-tryptophan, an antioxidant that prevents cell death induced by PpIX irradiation by scavenging 

singlet O2 and tempol, a superoxide scavenger [32]. Incubation of ALA-treated DRG neuron 

cultures in the presence of L-tryptophan (2 mM) significantly increased (p = 0.021; t-test) the 

light dose required for the initiation of action potentials from 39 ± 6 J/cm2 (n = 9) to 67 ± 9 J/cm2 

(n = 8) by PpIX irradiation, without significantly affecting the frequency of action potentials (Fig. 

3A). By contrast, tempol (1 mM) had no effect on either parameter. These data reveal an 

involvement of singlet O2 in the phototoxicity-evoked excitation of DRG neurons. 

 

3.6. Proliferating cells initiate PpIX phototoxicity-evoked action potentials in DRG neurons 

The activation of nociceptive neurons by PpIX irradiation could be caused directly by singlet O2 

generated within the neuron or through the release of mediators from adjacent glial cells. We 

took advantage of the relative scarcity of glial cells in the vicinity of DRG neurons on days 1 and 

2 in vitro to investigate whether their presence influences the activation of action potentials by 

PpIX phototoxicity (Supplemental Fig. 3). Most neurons begin to respond to PpIX irradiation on 

day 3 in vitro, in keeping with a requirement for proliferating non-neuronal cells. The mean light 

dose required to activate the first burst of action potentials decreased from day 3. We 

performed a one-way ANOVA to compare the light dose required to trigger the first burst of 

action potentials with the number of days in culture (F10,153 = 5.0; p < 0.0001). A post-hoc 

Dunnett’s comparison revealed a significant reduction in light dose from day 5 (all p < 0.0001 vs 

Day 2; Fig. 3B). Action potential frequency (Fig. 3C) and the proportion of cells exhibiting bursts 

of action potentials (Fig. 3D) increased from day 3. A one-way ANOVA revealed significant 

changes in action potential frequency with the number of days in culture (F11,161 = 2.8; p = 

0.002). The increase in action potential frequency reached statistical significance post-hoc 

Dunnett’s comparison vs Day 1) on days 6 (p = 0.044), 7 (p = 0.013) and 9 (p = 0.007; Fig. 3C). 

This coincides with the proliferation of non-neuronal cells (Supplemental Fig. 3).  

 

We further explored a role for proliferating non-neuronal cells using transformed human 

keratinocyte (HaCaT) skin cells [7]. Exposure of HaCaT cells to ALA caused the production of PpIX 

as evidenced by fluorescence emission (Supplemental Fig. 4A). Laser irradiation following 

exposure to ALA led to substantial cell death (Supplemental Fig. 4B). We investigated whether 

growing DRG neurons on HaCaT cells influences the activation of nociceptors by PpIX irradiation. 
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The light dose required to activate the first burst of DRG action potentials following irradiation 

was dramatically decreased by the presence of HaCaT cells (Fig. 3E). The latency to the first 

burst significantly decreased (p < 0.0001; t-test) from 778 ± 121 s (n = 5) in the absence to 63 ± 

22 s (n = 9) in the presence of HaCaT cells. This corresponds to a significant reduction (p < 

0.0001; t-test) in the threshold light dose required to produce action potentials in nociceptive 

neurons from 75 ± 12 J/cm2 to 6 ± 2 J/cm2 (Fig. 3E). By contrast, the frequency of neuronal firing 

was unaffected by HaCaT cells (data not shown). Taken together, these data suggest that PpIX 

irradiation-evoked excitation of DRG neurons requires the generation of ROS by proliferating 

cells.  

3.7. TRPV1 Inhibition suppresses PpIX phototoxicity-evoked action potentials 

The in vivo data suggest that PpIX irradiation causes thermal hyperalgesia (Fig. 1F). This 

observation, together with patient reports that PpIX mediated pain resembles a burning 

sensation, implicates the involvement of the heat activated ion channel TRPV1 a mediator of 

thermal pain on primary afferent nociceptors [19,27,28,38]. Indeed, a recent study 

demonstrated that both ion channels are activated by PDT with blue light [1]. We examined the 

effect of AMG-9810 (1 and 3 M), a selective TRPV1 antagonist [26], on phototoxicity-evoked 

action potentials initiated by irradiation with red light. AMG-9810 caused a concentration-

dependent inhibition of action potentials, with 3 µM AMG-9810 significantly (p = 0.001; t-test) 

reducing the frequency of action potentials (Fig. 4A).  

We explored the selectivity of AMG-9810 (1 µM) by applying the antagonist to either TRPV1 or 

TRPA1 receptors, while recording currents evoked by capsaicin (1 µM) and carvacrol (100 µM), 

respectively. AMG-9810 inhibited currents mediated by both TRPV1 (45 ± 5% inhibition, n = 3) 

and TRPA1 (22 ± 12% inhibition, n = 5) receptors (Fig. 4B). Next we used the same approach to 

explore the selectivity of the TRPA1 antagonist, HC-030031. HC-030031 (10 µM) blocked 

currents mediated by TRPA1 (89 ± 5% inhibition, n = 3), but had no effect on currents mediated 

by TRPV1 receptors (2 ± 1% inhibition, n = 4; Fig. 4C). Therefore we used HC-030031 to 

determine whether there is a role for TRPA1 in phototoxicity-evoked action potentials. HC-

030031 (10 µM) had no significant effect on either the threshold light dose (p = 0.2) or action 

potential frequency (p = 0.5; Fig. 4D).  

Taken together, the data implicate the involvement of TRPV1 receptor activity in PDT-mediated 

DRG activation.  
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3.8. Heat is not responsible for PpIX phototoxicity-evoked TRPV1 activity 

TRPV1 channels on primary nociceptive neurons integrate diverse signals including noxious 

heat, inflammatory mediators and lipid metabolites [26]. These mediators of pain can activate 

TRPV1 channels in their own right and/or modulate thermal activation. TRPV1 channels have a 

thermal activation threshold of >40oC which falls in the presence of inflammatory mediators and 

other sensitizers [26,31]. We explored whether heat may play a role in the PpIX irradiation-

evoked excitation of nociceptive neurons. An irradiation light dose of 115 J/cm2, equivalent to 

the maximum exposure of DRG neurons, caused only a 1.3oC temperature increase in the 

recording chamber (Fig. 5A). Furthermore, the use of a thermal imaging camera revealed that 

laser irradiation (3.7 J/cm2) of SWISS mouse tails elevated temperature by < 2oC (Fig. 5B). 

Neither the in vivo nor the in vitro temperature increase is sufficient to reach the thermal 

threshold of TRPV1 activation [9]. This presumably explains why laser irradiation alone fails to 

initiate either pain (Fig. 1A) or action potentials (Fig. 2B - D). However, PpIX irradiation may 

cause the release of thermal sensitizers and/or direct activators of TRPV1 channels on 

nociceptive neurons.  

 

Bradykinin is a known sensitizer of TRPV1 channels to heat through activation of bradykinin B2 

receptors [26]. The B2 antagonist HOE140 (1 µM, n = 15) had no effect on PpIX phototoxicity-

evoked action potentials recorded from DRG neurons (Fig. 5C). These data suggest that B2 

receptor activation is not required for thermal sensitization of TRPV1 channels during PpIX-

phototoxicity. 

 

3.9. Evidence for an involvement of lipid metabolites in PpIX irradiation-evoked action potentials 

We next examined whether there is a role for lipid metabolites in PpIX irradiation-evoked 

excitation of DRG neurons. N-arachidonoyl serotonin (AA-5-HT) inhibits fatty acid amide 

hydrolase (FAAH) when applied at M concentrations, thereby reducing production of 

endogenous lipid metabolites that may activate and/or sensitize TRPV1 channels [6,24].  

Furthermore, when applied at nM concentrations, AA-5-HT has been reported to inhibit 

intracellular Ca2+ increases caused by capsaicin-evoked activation of recombinant TRPV1 

receptors [24]. AA-5-HT (100 nM) had no significant effect on the threshold light dose, or the 

frequency of PpIX sensitivity-evoked action potentials when applied to DRG neurons (n = 5; data 

not shown). However, a higher concentration of AA-5-HT (1 µM; n = 8) significantly inhibited 

action potential frequency (p = 0.031; t-test), without affecting the light dose required to initiate 
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the first burst of action potentials (Fig. 5D). Furthermore, AA-5-HT (1 M) failed to inhibit 

currents mediated by recombinant rodent TRPV1 channels recorded from outside-out patches 

excised from HEK cells  (n = 4; Fig. 5E) demonstrating that AA-5-HT (1 M) is inactive at TRPV1 

channels. We also tested the selective FAAH antagonist, PF-3845 (2 M; n = 12) which, like AA-

5-HT, significantly inhibited action potential frequency (p = 0.004; t-test), without affecting the 

threshold light dose (Fig. 5D). Taken together the data suggest that FAAH metabolites liberated 

by PpIX irradiation activate TRPV1 channels leading to excitation of action potentials in DRG 

neurons.  

 

3.10. Local anaesthetic suppression of PpIX phototoxicity-evoked action potentials  

Nerve blockade by local anaesthetics inhibits pain associated with PDT [38]. We examined 

whether lidocaine affects PpIX phototoxicity-evoked action potentials in DRG neurons. Lidocaine 

(100 M; n = 5) inhibited action potential frequency (p = 0.04; t-test) without significantly 

affecting the threshold light dose (Fig. 6A). Lidocaine also reduced the percentage of cells that 

responded to PDT from 100% to 60%.  

 

QX-314 is a positively charged quaternary lidocaine derivative that is unable to cross the DRG 

cell membrane directly and does not affect voltage-activated Na+ channels when applied 

extracellularly, but can gain access to the inside of cells through open TRPV1 or TRPA1 channels 

[5,8]. Consistent with this, when applied concomitantly QX-314 (5 mM) inhibited action 

potentials evoked by capsaicin (30 M; Fig. 6B).  QX-314 (5 mM; n = 9), applied to the recording 

chamber, also significantly (p < 0.0001; t-test) inhibited PpIX irradiation-evoked action potential 

frequency without affecting the threshold light dose (Fig. 6C) and reduced the percentage of 

cells that responded to PDT from 100% to 67%. Since TRPA1 receptors do not participate in 

phototoxicity-evoked action potentials (Fig. 4D), these data support the hypothesis that TRPV1 

channels enable intracellular access of QX-314. However, we cannot rule out the possibility of 

an alternative route of QX-314 entry [8]. 

 

3.11. Menthol suppresses PpIX phototoxicity-evoked action potentials and pain 

Menthol causes a cooling sensation by activating TRPM8 receptors and also exhibits local 

anaesthetic effects through inhibition of voltage-activated Na+ channels on nociceptive neurons 

[30]. We examined whether menthol (300 M and 600 M) inhibits PpIX irradiation-evoked 

action potentials recorded from DRG neurons. Menthol inhibited action potential frequency in a 
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concentration-dependent manner (Fig. 7A). There was a statistically significant reduction of 

action potential frequency (with respect to control) at 600 µM (p < 0.035; t-test). Also, the 

percentage of cells that responded to PDT was reduced by menthol (600 µM) from 100% to 

33%.  Menthol (300 M) had no effect on the threshold light dose; however, the reduction in 

the number of cells responding in the presence of 600 µM menthol precluded analysis of the 

average threshold light dose in this case.  

 

We next investigated whether menthol affects PpIX phototoxicity-evoked pain behavior in mice. 

The application of menthol (16%) in aqueous cream had no effect on PpIX-mediated 

fluorescence determined using the photospectrometer with fibre-optic coupled laser excitation 

at 405 nm (Fig. 7B). The application of menthol (2% and 16%) to the tails of SWISS mice 600 s 

prior to laser (630 nm, 3.7 J/cm2) irradiation caused a dose-dependent reduction in the duration 

of pain behaviour (Fig. 7C). Vehicle treated mice did not respond to irradiation with pain 

behaviour (0.3 ± 0.3 s; n = 15), while ALA treated mice treated with aqueous cream 600 s prior 

to laser irradiation exhibited pain behaviour (28 ± 4 s; n = 15; Fig. 7C), consistent with our prior 

observations (Fig. 1A). By contrast, ALA treated mice receiving 2% or 16% menthol displayed 

pain behaviour lasting 11 ± 3 s (n = 10) and 8 ± 2 s (n = 10), respectively. A one-way ANOVA 

revealed a significant (F3,46 = 22.9; p < 0.0001) difference in mean pain behaviour duration (Fig. 

7C). A post-hoc Dunnett’s comparison (vs ALA treated mice receiving aqueous cream vehicle) 

demonstrated a significant reduction in pain behaviour in mice receiving 2% or 16% menthol 

(both P < 0.0001). These data suggest that menthol is an effective analgesic for treating PpIX 

irradiation-evoked pain. 
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Discussion 

Pain caused by drug-induced phototoxicity is a widely encountered problem in clinical medicine. 

Accumulation of PpIX is a leading cause of phototoxicity resulting in acute pain during light 

exposure both in individuals suffering from the most common inherited cutaneous porphyria, 

EPP, and in most patients receiving PDT to treat skin diseases, such as skin cancers and pre-

cancers [19,27,28,38]. Approximately 20% of the UK population aged ≥ 60 is affected by AK 

[17,25] and we estimate that ~33% may benefit from PDT. Furthermore, in Caucasians, BCC is 

the most common cancer; with ~110,000 UK adults developing the disease each year [34]. 

Similarly, around a third may benefit from PDT. Cutaneous porphyrias are less common (in 

Scotland ~ 1 in 10,000 and only 7.6 in 100,000 being EPP [11]). Nevertheless, porphyrias have a 

major health impact, with lifelong symptoms. Thus, porphyrin-induced pain represents a 

significant unmet clinical need. 

 

We developed an in vivo mouse behavioral model of pain evoked by PpIX phototoxicity initiated 

by 630 nm light and investigated its molecular mechanisms in vitro using cultured primary 

afferent DRG neurons. Using these approaches we examined the underlying molecular 

mechanisms and identified menthol as a topical analgesic, which may be effective in the 

treatment of pain associated with PpIX-induced phototoxicity. 

 

PpIX phototoxicity-induced pain behavior in mice was characterised by tail lifting, holding and 

licking following light exposure. The highly pigmented tails of C57 mice exhibited lower PpIX-

mediated fluorescence and there was less pain behaviour than was observed with SWISS mice 

that lacked pigmentation. By contrast, the level of PpIX fluorescence in the less pigmented paw 

skin was similar in white and black mice demonstrating that there was no difference in the 

abilities of the two mouse strains to synthesize PpIX in response to topical ALA. Instead, skin 

pigmentation absorbs the irradiation required to elicit PpIX excitation. Indeed, -melanocyte-

stimulating hormone and similar drugs that cause melanin accumulation reduce the 

photosensitivity of patients with cutaneous porphyrias [16,36].  

 

PpIX phototoxicity in SWISS mice also caused thermal hyperalgesia as evidenced by a reduction 

in tail withdrawal latency from hot water compared to mice that received either laser or 

photosensitizer alone. A heightened thermal response could be caused by PpIX phototoxicity-

evoked activation of TRPV1 channels on primary afferent nociceptive DRG neurons. Consistent 
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with this, PpIX phototoxicity induced action potentials in cultured DRG neurons, which were 

reduced in frequency to negligible levels by the TRPV1 antagonist AMG-9810 or extracellular 

application of the quaternary lidocaine derivative QX-314. Extracellular QX-314 can enter 

nociceptive neurons expressing active TRPV1 channels causing blockade of their voltage-

activated Na+ channels [5]. By contrast to the blockade by the TRPV1 antagonist, the TRPA1 

antagonist HC-030031 had no effect on action potential frequency. This suggests that action 

potentials evoked by PpIX phototoxicity during irradiation by 630 nm light is mediated through 

TRPV1 and not TRPA1 receptors. 

 

TRPV1 channels can be activated by a variety of stimuli including noxious heat [9,26,40]. 

However, the temperature of both the mouse tail and the recording chamber during in vivo and 

in vitro laser exposure, respectively, remained well below the threshold for TRPV1 activation. 

Therefore it is unlikely that 630-nm irradiation provides a thermal stimulus for TRPV1 activation.  

In keeping with this, red light alone neither caused acute pain behavior nor thermal 

hypersensitivity. Inflammatory mediators, such as bradykinin, sensitize TRPV1 channels, 

reducing their thermal activation threshold [9,26]. However, the bradykinin receptor antagonist, 

HOE140, did not affect PpIX evoked action potentials in DRG neurons suggesting that bradykinin 

is not involved.  

 

Lipid metabolites also play a role in TRPV1 channel activation and sensitization to heat pain [31]. 

Furthermore, FAAH inhibitors, which inhibit the metabolism of the endocannabinoid, 

anandamide, to arachidonic acid, are analgesic [10]. In keeping with a role for fatty acid 

metabolites downstream of FAAH in PpIX phototoxicity pain triggered by red light, the FAAH 

inhibitor, AA-5-HT, reduced action potential frequency in DRG neurons. AA-5-HT did not directly 

antagonise recombinant rodent TRPV1 receptors, implying that its inhibition of PpIX-evoked 

action potentials is mediated through altered lipid metabolism. In support of this hypothesis the 

selective FAAH antagonist, PF-3845, also inhibited action potentials. Several metabolites 

downstream of FAAH sensitize and/or activate TRPV1 channels including arachidonic acid, N-

acyl-ethanolamines and prostaglandins [9,26]. These lipid metabolites are prime candidates as 

mediators of PpIX phototoxicity pain associated with red light. It is possible that FAAH 

antagonists might be of benefit for treating PDT pain. Additional experiments investigating 

whether FAAH antagonists reduce pain behaviour in mice will be important to explore this 

possibility.   



21 
 

 

Several lines of evidence suggest that the source of the lipid metabolite responsible for TRPV1 

receptor activation is unlikely to be the DRG neuron itself. The threshold light dose required for 

PpIX-evoked action potentials was greatly diminished by an increased density of proliferating 

non-neuronal cells. This was most clearly demonstrated by co-culturing DRG neurons with 

human keratinocyte HaCaT cells, which dramatically reduced the threshold light dose for PpIX-

evoked action potentials in DRG neurons. This suggests that the mediator of TRPV1 receptor 

activation is released from proliferating cells during PpIX phototoxicity. The demonstration that 

the 1O2 scavenging antioxidant L-tryptophan increases the threshold light dose for PpIX-evoked 

action potentials suggests that ROS, generated by PpIX fluorescence in proliferating cells, trigger 

the release of a TRPV1 activator. The observation that the superoxide scavenger tempol had no 

effect on PpIX phototoxicity-evoked action potentials suggests that 1O2, specifically, is 

implicated in the pain associated with PpIX-induced phototoxicity. 

 

DRG neurons are remarkably resistant to PpIX phototoxicity due to high levels of singlet oxygen 

scavenging antioxidants [41], which likely limits both the availability of singlet oxygen and the 

autocrine generation of lipid metabolites. Instead, phototoxicity-evoked pain initiated by red 

light appears to require the paracrine action of lipid metabolites released from proliferating 

cells. 

 

It is interesting that the excitatory response in whole cell recordings from DRG neurons was 

more sustained than that observed using the cell-attached configuration. A possible explanation 

for this could be desensitization of TRPV1 channels, which is known to be strongly influenced by 

Ca2+ accumulation [29]. It is possible that there is greater Ca2+ buffering capacity in the whole-

cell configuration, by virtue of the electrode solution, which may limit TRPV1 desensitization. In 

future behavioral experiments it will be interesting to explore whether pain behaviour also 

exhibits desensitization.  

  

The 1O2 generated by PpIX phototoxicity directly affects lipids by reacting with cis-double bonds 

in unsaturated fatty acids including arachidonic acid [39] and this may lead to an increased 

production of additional TRPV1 active molecules. There are several oxidation products of 

arachidonic acid including 12(S)-hydroperoxyeicosatetraenoic acid, which is a TRPV1 agonist [9] 

and a possible participant in PpIX phototoxicity-evoked action potentials and pain.  
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A recent study demonstrated that blue light activates TRPV1 and TRPA1 channels, an effect that 

was enhanced by elevating PpIX levels [1]. The constitutive sensitivity of TRPA1 channels 

occurred over a range of wavelengths spanning UVA and visible blue light. Not only was blue 

light capable of activating TRPA1 channels, blue light irradiation of human skin in the absence of 

a photosensitizer was associated with pain. By contrast, the application of a photosensitizer is a 

prerequisite for pain associated with red light exposure in patients [38]. Furthermore, our 

observations demonstrate the requirement for the application of a photosensitizer and 

irradiation to initiate action potentials in DRG neurons and pain behaviour in mice. It is 

interesting that phototoxicity evoked action potentials during irradiation by 630 nm light were 

resistant to the TRPA1 antagonist. This suggests that the causes of pain evoked by PDT with blue 

and red light may differ.  

 

The in vitro and in vivo mouse models for PpIX-induced phototoxicity and pain provide 

approaches for identifying effective analgesic agents. We investigated menthol, which is 

commonly used for treating muscle pain. Recent studies suggest that menthol’s analgesic 

actions are mediated through activation of TRPM8 channels, leading to the cooling sensation 

associated with menthol application, and through a local anaesthetic like state-dependent 

inhibition of voltage-activated Na+ channels on DRG neurons [23,30]. Indeed, menthol 

suppressed PpIX-evoked action potentials in DRG neurons could be explained by direct 

inhibition of voltage-activated Na+ channels. Topical menthol also reduced PpIX phototoxicity 

pain behavior in mice, without affecting PpIX photoactivation. In the whole animal the 

activation of TRPM8 receptors by menthol likely also contributes to analgesia by acting as a 

counterirritant and/or by engaging spinal gating mechanisms [33,42]. Experiments in TRPM8 

knockout mice would help establish the role played by these receptors in the analgesic action of 

menthol on PDT pain. However, this will require refinement of the behavioral model of PDT pain 

to utilise a tissue that is less pigmented in C57 mice, such as the paw pad perhaps.       

 

Regardless of its mode of action, based on our findings we anticipate that topical menthol will 

be effective for mitigating PpIX-induced pain and this will have important implications for 

optimisation of PDT treatment for patients with skin cancers and pre-cancers and for the 

management of patients with cutaneous porphyrias, notably erythropoietic protoporphyria. This 

will require further investigation in future clinical trials.   
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Figure Legends: 

Figure 1. PpIX-evoked pain behavior in mice. A, Tail lifting, holding and licking in mice following 

laser irradiation (60 s, 3.7 J/cm2). C57 and SWISS mouse tails were treated with vehicle soft 

white paraffin cream (vehicle) or cream containing ALA (20% w/w). ‡‡‡ indicates p < 0.0001. B, 

Spectroscopy analysis of in vivo PpIX fluorescence (arbitrary fluorescence units: AFU) in human 

forearm and the tails of SWISS mice either treated with vehicle or ALA. C, Peak PpIX 

fluorescence (FU) in the tails of C57 and SWISS mice treated with vehicle or ALA expressed as a 

percentage of the fluorescence in ALA-treated human forearm. ‡‡‡ indicates p < 0.0001. D, Peak 

fluorescence in the ears, tails and paws of C57 (black bars) and SWISS (gray bars) mice after 

topical ALA application to their tails. Application of black ink to ALA treated tails of SWISS mice 

abolished PpIX fluorescence (open bar). ** indicates p = 0.006, ††† indicates p < 0.0001. E, 

Graph of PpIX fluorescence (expressed as peak (634 nm) normalised to auto-fluorescence (500 

nm); PF/AF) versus pain behavior reveals a lack of correlation. F, Graph of SWISS mouse tail 

withdrawal latencies from hot water (48oC) after no treatment, vehicle cream, ALA, or ALA plus 

laser irradiation to tails. PpIX irradiation causes hypersensitivity evidenced by a reduction in tail 

withdrawal latency. † indicates p = 0.029. Statistics are expressed as * for t-tests, † for one-way 

ANOVA and ‡ for two-way ANOVA. 

Figure 2. PpIX irradiation evokes action potentials in primary afferent DRG neurons. A, 

Confocal microscopy images of cells in DRG cultures on day 4 in vitro. Images represent 

fluorescence (top) and combined fluorescence/ bright field illumination (bottom). Exemplar DRG 

neurons are indicated by white arrows. Yellow arrows indicate cells that lack neuronal 

morphology. Graph shows flow cytometric analysis of cells in DRG cultures with (gray) and 

without (black) ALA. Inset graphs illustrate the regions of interest that define the cell 

populations used for gating. B, Cell-attached patch electrophysiological recording from DRG 

neurons from SWISS mice before and during laser irradiation. Cells received either no treatment 

(upper trace) or were treated with ALA (lower trace). C, Cell attached patch recordings from 

untreated (top trace) and ALA treated (bottom trace) C57 DRG neurons before and during laser 

irradiation. D, Whole-cell current clamp recordings from untreated (top trace) and ALA treated 

(bottom trace) C57 DRG neurons. In B - D horizontal lines indicate the period of laser irradiation 

and expanded traces depict the highest frequency action potentials recorded from these ALA 

treated cells during laser irradiation.  
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Figure 3. Proliferating cells initiate PpIX irradiation evoked action potentials in DRG neurons. 

A, Graph of DRG neuron action potential frequencies and threshold light doses (expressed as 

percent of control) after treatment with either L-tryptophan or tempol or in matched controls 

(culture days 6 and 7). * indicates p = 0.021. B, Graph of the light dose required to initiate action 

potentials in DRG neurons after 2 – 15 days in culture. ††† indicates p < 0.0001. C, Graph of 

action potential frequencies initiated by PpIX irradiation on day 1 – 15 in culture. Day 6 * 

indicates p = 0.044, Day 7 * indicates p = 0.013 and Day 9 ** indicates p = 0.007. D, Graph of the 

percentage of DRG neurons exhibiting action potentials during PpIX irradiation on day 1 – 15 in 

culture. E, An example of PpIX irradiation-evoked action potentials recorded on day 3 in culture 

from a neuron in the absence or in the presence of HaCaT cells (left panel). Right panel, average 

light dose required to initiate action potentials in ALA treated neurons on day 3 in the presence 

and absence of HaCaT cells. *** indicates P < 0.0001. Statistics are expressed as * for t-tests and 

† for one-way ANOVA.  

Figure 4. Inhibition of TRPV1-mediated excitation suppresses PpIX irradiation-evoked action 

potentials. A, Graph of DRG neuron threshold light dose and action potential (AP) frequency 

(expressed as percent of control) after treatment with AMG-9810 (1 or 3 µM) or in matched 

controls (culture days 6 - 8). ** indicates p = 0.001, t-test. The absence of action potentials in 

the presence of 3 µM AMG-9810 prevented analysis of the threshold light dose. B, Left, 

Exemplar capsaicin (1 µM)-evoked current recorded from an outside-out patch excised from an 

HEK cell expressing TRPV1 receptors and, right, a whole-cell carvacrol (100 µM)-evoked current 

recorded from an HEK cell expressing TRPA1 receptors. AMG-9810 (3 µM) inhibited currents 

mediated by TRPV1 and TRPA1 receptors. C, By contrast, HC-030031 (10 µM) only inhibited 

carvacrol (100 µM)-evoked currents mediated by TRPA1 receptors, while capsaicin (1 µM)-

evoked currents mediated by TRPV1 receptors were unaffected. D, Graph of DRG neuron 

threshold light dose and action potential (AP) frequency (expressed as percent of control) after 

treatment with HC-030031 (10 µM) or in matched controls (culture days 6 - 8). 

Figure 5. Inhibition of FAAH reduced the frequency of PpIX irradiation-evoked action 

potentials. A, The temperature of saline (measured by a digital thermo-hygrometer) within the 

recording chamber increased by <1.5oC during the 20 min laser (630 nM) irradiation. B, Likewise, 

infrared recording with a thermal imaging camera revealed that exposure of the mouse tail to 

laser irradiation for 60 s caused a temperature increase of <2oC. C, Graph of action potential 
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frequencies and threshold light doses (expressed as percent of control) after treatment with the 

bradykinin B2 antagonist, HOE140 (1 µM), or in matched controls (culture days 6 and 7). D, 

Inhibition of fatty acid metabolism by the FAAH antagonists, AA-5-HT (1 µM) or PF-3845 (1 µM), 

reduced PpIX irradiation-evoked action potential frequency without affecting the threshold light 

dose. * indicates p = 0.031, ** indicates p = 0.004. E, An exemplar capsaicin (1 M)-evoked 

current recorded from an outside-out patch excised from an HEK cell expressing TRPV1 

receptors. The current was unaffected by co-application of AA-5-HT (1 M). Statistics are 

expressed as single or double asterisks for t-tests. 

 

Figure 6. Suppression of PpIX irradiation-evoked action potentials by lidocaine and QX-314. A, 

Lidocaine (100 M) applied to the recording chamber inhibited PpIX irradiation evoked action 

potential frequency without significantly affecting the threshold light dose. * indicates p = 0.04. 

B, Action potentials evoked by local application of capsaicin (30 M) were abolished by the co-

application of QX-314 (5 mM) with partial reversal of block upon subsequent application of 

capsaicin alone. C, QX-314 (5 mM) inhibited PpIX irradiation evoked action potential frequency 

without affecting the threshold light dose. *** indicates p < 0.0001. Statistics are expressed as 

single or triple asterisks for t-tests. 

 

Figure 7. Menthol suppresses PpIX irradiation-evoked action potentials and pain. A, Menthol 

(300 and 600 M) caused a concentration-dependent inhibition of the frequency of PpIX 

irradiation-dependent action potentials. Menthol (300 M) did not affect the threshold light 

dose. Menthol (600 M) reduced the occurrence of action potentials to the extent that the 

threshold light dose could not be calculated. * indicates p = 0.035. B, Menthol (16% in aqueous 

cream) application to mouse tails did not affect ALA induced PpIX fluorescence (FU) detected by 

laser diode spectroscopy, expressed as a percentage of the ALA-induced PpIX fluorescence in 

human forearm. C, A bar graph of PpIX irradiation-evoked pain behaviour when mouse tails 

were treated with vehicle or with ALA. Mouse tails treated with ALA were treated with vehicle, 

2% menthol or 16% menthol. ††† indicates p < 0.0001. Statistics are expressed as * for t-tests 

and † for one-way ANOVA.  
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Supplemental Fig. 1 

SWISS mice 
ALA Vehicle 

C57 mice 
ALA Vehicle 

A 

B 

Fluorescence visualised using a Wood’s lamp. A, top panel, SWISS white mice exhibited visible pink 
fluorescence in ALA treated tails, which was not evident in vehicle treated tails. Bottom panel, 
fluorescence was also visible in other tissues including paws, ears and noses. B, ALA treated C57 
black mice exhibited visible fluorescence in skin that lacked dark pigmentation (particularly obvious 
and consistent in the paws).   
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Supplemental Fig. 2 

Tail withdrawal from heated water. The graph shows the relationship between SWISS mouse tail 
withdrawal latency as a percentage of the maximum time of exposure to heated water (30 s). Water 
at a temperature of 48oC (**P = 0.008) and 53oC (**P = 0.001) caused significant decreases in tail 
withdrawal latencies (One-sample Wilcoxon signed rank test vs 30 s). 

0 

5 

10 

15 

20 

25 

30 

35 

Temperature (oC) 

36 38 40 42 44 46 48 50 52 54 

W
it
h
d
ra

w
a
l l

a
te

n
c
y
 (

s
) 

** 

** 



Supplemental Fig. 3 

Day 1 Day 4 Day 8 

The number of supporting cells increase during DRG culture. Transmission microscopy reveals the proliferation of 
non-neuronal cells in DRG cultures in this case after four and eight days in vitro. 
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Supplemental Fig. 4 

Non-neuronal cells are susceptible to phototoxicity. A, Flow cytometry analysis of HaCaT cells demonstrates 
fluorescence emission following treatment with ALA (1 mM for 4 h) that was not seen in control cells. B, The MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to detect viable ALA treated HaCat 
cells (darkly stained) before and after irradiation (630 nm, with an irradiance of 96 mW/cm2). ALA treated HaCaT 
keratinocyte cells exhibit substantial cell death (fewer darkly stained cells) after a similar exposure to irradiation.  




