460 research outputs found

    Automated Experiments for Deriving Performance-relevant Properties of Software Execution Environments

    Get PDF
    The execution environment can play a crucial role when analyzing the performance of a software system. However, detecting execution environment properties and integrating such properties into performance analyses is a manual, error-prone task. In this thesis, a novel approach for detecting performance-relevant properties of the software execution environment is presented. These properties are automatically detected using predefined experiments and integrated into performance prediction tools

    Quantum simulation of the spin-boson model with a microwave circuit

    Get PDF
    We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here, we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.Comment: 23 pages, 10 figure

    The relationship between age, neural differentiation, and memory performance

    Get PDF
    Healthy aging is associated with decreased neural selectivity (dedifferentiation) in category-selective cortical regions. This finding has prompted the suggestion that dedifferentiation contributes to age-related cognitive decline. Consistent with this possibility, dedifferentiation has been reported to negatively correlate with fluid intelligence in older adults. Here, we examined whether dedifferentiation is associated with performance in another cognitive domain—episodic memory—that is also highly vulnerable to aging. Given the proposed role of dedifferentiation in age-related cognitive decline, we predicted there would be a stronger link between dedifferentiation and episodic memory performance in older than in younger adults. Young (18–30 years) and older (64–75 years) male and female humans underwent fMRI scanning while viewing images of objects and scenes before a subsequent recognition memory test. We computed a differentiation index in two regions of interest (ROIs): parahippocampal place area (PPA) and lateral occipital complex (LOC). This index quantified the selectivity of the BOLD response to preferred versus nonpreferred category of an ROI (scenes for PPA, objects for LOC). The differentiation index in the PPA, but not the LOC, was lower in older than in younger adults. Additionally, the PPA differentiation index predicted recognition memory performance for the studied items. This relationship was independent of and not moderated by age. The PPA differentiation index also predicted performance on a latent “fluency” factor derived from a neuropsychological test battery; this relationship was also age invariant. These findings suggest that two independent factors, one associated with age, and the other with cognitive performance, influence neural differentiation

    Transcostovertebral kyphoplasty of the mid and high thoracic spine

    Get PDF
    While Kyphoplasty is increasingly becoming a recognised minimally invasive treatment option for osteoporotic vertebral fractures and neoplastic vertebral collapse, the experience in the treatment of vertebrae of the mid (T5-8)- and high (T1-4) thoracic levels is limited. The slender pedicle morphology restricts the transpedicular approach at these levels, necessitating extrapedicular placement techniques. Fifty five vertebrae of 32 consecutive patients were treated with kyphoplasty at levels ranging from T2-T8 for vertebral fractures (27 patients) or osteolytic collapse (5 patients). All procedures were performed through the transcostovertebral approach under fluoroscopic guidance. The radioanatomical landmarks of this minimally invasive approach were consistently identified and strictly adhered to. One fracture required open instrumentation due to posterior column injury in addition to kyphoplasty. Identification of specific radioanatomical landmarks allowed precise tool introduction in all cases without intraspinal or paravertebral malplacement. Average operating time for patients with osteoporotic fractures was 30min per level (range 13-60min) and 52min per level (range 35-95min) in neoplastic cases. Biopsy yield in patients with known or suspected malignancies was 100%. Epidural cement leakage was detected in one patient with pedicular osteolysis. Perforation of the lateral vertebral cortex during balloon inflation occurred in another patient. Both intraoperative complications were without clinical significance. Kyphoplasty in mid- to -high thoracic levels is possible via the transcostovertebral route under fluoroscopic guidance. Strict adherence to a stepwise protocol of tool introduction following defined radioanatomical landmarks is mandatory for the safe completion of this minimally invasive techniqu

    Structured Techniques for Creating Engaging Online Discussions

    Get PDF
    Each year, more students enroll in online classes than the year before (Allen and Seaman, 2017). Online asynchronous discussions are often used in these online classes as a method of interaction between students and the instructor typically via an online discussion forum. It is in the discussion forums that students examine topics, debate points of view, defend opinions, and receive feedback from their instructor and peers despite the location or time difference that may exist between them (Cho and Tobias, 2016). Within these discussions, communities of inquiry can be created and the sense of isolation that can often be defeating to student motivation in the online classroom can be mitigated (Hung and Chou, 2015). There are many effective techniques to use when implementing discussions in the online classroom beyond the traditional call and response asynchronous format. Strategies such as role assignments, structured debates, discussion artifacts, Socratic circles, or video discussions can engage and motivate students, create a sense of social presence, and provide new ways for students and instructors to interact in the online classroom. Using techniques such as role assignments or online debates can facilitate the development of a student\u27s cognitive presence, help build communities of inquiry, and increase their listening skills (Gašević, Adesope, Joksimović, and Kovanović, 2015; Wise and Chiu 2014; Xie, Yu, and Bradshaw, 2014)

    Noxious counterirritation in patients with advanced osteoarthritis of the knee reduces MCC but not SII pain generators: A combined use of MEG and EEG

    Get PDF
    Chronic pain is mainly a result of two processes: peripheral and central sensitization, which can result in neuroplastic changes. Previous psychophysical studies suggested a decrease of the so-called pain-inhibiting-pain effect (DNIC) in chronic pain patients. We aimed to study the DNIC effect on the neuronal level using magnetoencephalography and electroencephalography in 12 patients suffering from advanced unilateral knee osteoarthritis (OA). DNIC was induced in patients by provoking the typical OA pain by a slightly hyperextended joint position, while they received short electrical pain stimuli. Although the patients did not report a reduction of electrical pain perception, the cingulate gyrus showed a decrease of activation during provoked OA pain, while activity in the secondary somatosensory cortex did not change. Based on much stronger DNIC induction at comparable intensities of an acute counterirritant pain in healthy subjects this result suggests a deficit of DNIC in OA patients. We suggest that the strength of DNIC is subject to neuronal plasticity of descending inhibitory pain systems and diminishes during the development of a chronic pain condition
    corecore