957 research outputs found
Metropolia
Niniejszy artykuł stanowi fragment czwartego rozdziału
ostatniej książki Michaela Hardta i Antonia Negriego
Commonwealth, w znacznie większej mierze niż ich
poprzednie prace zainteresowanej wątkami miejskimi.
Zawarta w nim propozycja to próba ujęcia współczesnego
miasta w kategoriach biopolitycznych, co odróżniałoby je
od wcześniejszych form organizacji przestrzennej,
np. miasta przemysłowego i pozwalało na przejście od
formy miejskiej do formy metropolitalnej. Główna teza
tekstu głosi, że z uwagi na zachodzące współcześnie zmiany
na gruncie produkcji i pracy, metropolia zajmuje miejsce
zarezerwowane wcześniej dla fabryki („metropolia jest tym
dla wielości, czym fabryka dla klasy robotników
przemysłowych”). Staje się zarazem nieograniczonym
ścianami obszarem produkcji tego, co wspólne,
jak i obiektem kontestacji ogniskującej się w obliczu władzy
imperialnej i kapitalistycznego wyzysku. Autorzy analizują
w tym miejscu również dwie kolejne jakości de&niujące
metropolię: kwestie nieprzewidywalnych spotkań oraz
organizacji oporu (w formie miejskich rebelii zwanych
żakeriami). Gdy ująć te cechy wspólnie, przekonują Hardt
i Negri, należy zgodzić się z tezą, że metropolia jest
miejscem, w którym wielość znajduje swój dom
The effective shear and dilatational viscosity of a particle-laden interface in the dilute limit
The effective dilatational and shear viscosities of a particle-laden fluid
interface are computed in the dilute limit under the assumption of an
asymptotically vanishing viscosity ratio between both fluids. Spherical
particles with a given contact angle of the fluid interface at the particle
surface are considered. A planar fluid interface and a small Reynolds number
are assumed. The theoretical analysis is based on a domain perturbation
expansion in the deviation of the contact angle from up to the
second order. The resulting effective dilatational viscosity shows a stronger
dependence on the contact angle than the effective shear viscosity, and its
magnitude is larger for all contact angles. As an application of the theory,
the stability of a liquid cylinder decorated with particles is considered. The
limits of validity of the theory and possible applications in terms of
numerical simulations of particle-laden interfaces are discussed.Comment: 28 pages, 4 figure
Learning Mixtures of Gaussians in High Dimensions
Efficiently learning mixture of Gaussians is a fundamental problem in
statistics and learning theory. Given samples coming from a random one out of k
Gaussian distributions in Rn, the learning problem asks to estimate the means
and the covariance matrices of these Gaussians. This learning problem arises in
many areas ranging from the natural sciences to the social sciences, and has
also found many machine learning applications. Unfortunately, learning mixture
of Gaussians is an information theoretically hard problem: in order to learn
the parameters up to a reasonable accuracy, the number of samples required is
exponential in the number of Gaussian components in the worst case. In this
work, we show that provided we are in high enough dimensions, the class of
Gaussian mixtures is learnable in its most general form under a smoothed
analysis framework, where the parameters are randomly perturbed from an
adversarial starting point. In particular, given samples from a mixture of
Gaussians with randomly perturbed parameters, when n > {\Omega}(k^2), we give
an algorithm that learns the parameters with polynomial running time and using
polynomial number of samples. The central algorithmic ideas consist of new ways
to decompose the moment tensor of the Gaussian mixture by exploiting its
structural properties. The symmetries of this tensor are derived from the
combinatorial structure of higher order moments of Gaussian distributions
(sometimes referred to as Isserlis' theorem or Wick's theorem). We also develop
new tools for bounding smallest singular values of structured random matrices,
which could be useful in other smoothed analysis settings
Is your model predicting the past?
When does a machine learning model predict the future of individuals and when
does it recite patterns that predate the individuals? In this work, we propose
a distinction between these two pathways of prediction, supported by
theoretical, empirical, and normative arguments. At the center of our proposal
is a family of simple and efficient statistical tests, called backward
baselines, that demonstrate if, and to what extent, a model recounts the past.
Our statistical theory provides guidance for interpreting backward baselines,
establishing equivalences between different baselines and familiar statistical
concepts. Concretely, we derive a meaningful backward baseline for auditing a
prediction system as a black box, given only background variables and the
system's predictions. Empirically, we evaluate the framework on different
prediction tasks derived from longitudinal panel surveys, demonstrating the
ease and effectiveness of incorporating backward baselines into the practice of
machine learning.Comment: Code available at:
https://github.com/socialfoundations/backward_baseline
- …