381 research outputs found

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 μ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 μ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 μ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 μ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel

    The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing

    Get PDF
    Kinetoplastid parasites—trypanosomes and leishmanias—infect millions of humans and cause economically devastating diseases of livestock, and the few existing drugs have serious deficiencies. Benzoxaborole-based compounds are very promising potential novel anti-trypanosomal therapies, with candidates already in human and animal clinical trials. We investigated the mechanism of action of several benzoxaboroles, including AN7973, an early candidate for veterinary trypanosomosis. In all kinetoplastids, transcription is polycistronic. Individual mRNA 5'-ends are created by trans splicing of a short leader sequence, with coupled polyadenylation of the preceding mRNA. Treatment of Trypanosoma brucei with AN7973 inhibited trans splicing within 1h, as judged by loss of the Y-structure splicing intermediate, reduced levels of mRNA, and accumulation of peri-nuclear granules. Methylation of the spliced leader precursor RNA was not affected, but more prolonged AN7973 treatment caused an increase in S-adenosyl methionine and methylated lysine. Together, the results indicate that mRNA processing is a primary target of AN7973. Polyadenylation is required for kinetoplastid trans splicing, and the EC50 for AN7973 in T. brucei was increased three-fold by over-expression of the T. brucei cleavage and polyadenylation factor CPSF3, identifying CPSF3 as a potential molecular target. Molecular modeling results suggested that inhibition of CPSF3 by AN7973 is feasible. Our results thus chemically validate mRNA processing as a viable drug target in trypanosomes. Several other benzoxaboroles showed metabolomic and splicing effects that were similar to those of AN7973, identifying splicing inhibition as a common mode of action and suggesting that it might be linked to subsequent changes in methylated metabolites. Granule formation, splicing inhibition and resistance after CPSF3 expression did not, however, always correlate and prolonged selection of trypanosomes in AN7973 resulted in only 1.5-fold resistance. It is therefore possible that the modes of action of oxaboroles that target trypanosome mRNA processing might extend beyond CPSF3 inhibition

    Collective excitation spectrum of a disordered Hubbard model

    Full text link
    We study the collective excitation spectrum of a d=3 site-disordered Anderson-Hubbard model at half-filling, via a random-phase approximation (RPA) about broken-symmetry, inhomogeneous unrestricted Hartree-Fock (UHF) ground states. We focus in particular on the density and character of low-frequency collective excitations in the transverse spin channel. In the absence of disorder, these are found to be spin-wave-like for all but very weak interaction strengths, extending down to zero frequency and separated from a Stoner-like band, to which there is a gap. With disorder present, a prominent spin-wave-like band is found to persist over a wide region of the disorder-interaction phase plane in which the mean-field ground state is a disordered antiferromagnet, despite the closure of the UHF single-particle gap. Site resolution of the RPA excitations leads to a microscopic rationalization of the evolution of the spectrum with disorder and interaction strength, and enables the observed localization properties to be interpreted in terms of the fraction of strong local moments and their site-differential distribution.Comment: 25 pages (revtex), 9 postscript figure

    HST Imaging Polarimetry of the Gravitational Lens FSC10214+4724

    Get PDF
    We present imaging polarimetry of the extremely luminous, redshift 2.3 IRAS source FSC10214+4724. The observations were obtained with HST's Faint Object Camera in the F437M filter, which is free of strong emission lines. The 0.7 arcsec long arc is unresolved to 0.04 arcsec FWHM in the transverse direction, and has an integrated polarization of 28 +/- 3 percent, in good agreement with ground-based observations. The polarization position angle varies along the arc by up to 35 deg. The overall position angle is 62 +/- 3 deg east of north. No counterimage is detected to B = 27.5 mag (3σ3\sigma), giving an observed arc to counterimage flux ratio greater than 250, considerably greater than the flux ratio of 100 measured previously in the I-band. This implies that the configuration of the object in the source plane at the B-band is different from that at I-band, and/or that the lensing galaxy is dusty.Comment: 17 pages, 3 figures. Accepted for publication in Astronomical Journal, February 199

    A spectroscopic study of IRAS F10214+4724

    Get PDF
    The z=2.286 IRAS galaxy F10214+4724 remains one of the most luminous galaxies in the Universe, despite its gravitational lens magnification. We present optical and near-infrared spectra of F10214+4724, with clear evidence for three distinct components: lines of width ~1000 km/s from a Seyfert-II nucleus; <~200 km/s lines which are likely to be associated with star formation; and a broad ~4000 km/s CIII] 1909ang emission line which is blue-shifted by ~1000 km/s with respect to the Seyfert-II lines. Our study of the Seyfert-II component leads to several new results, including: (i) From the double-peaked structure in the Ly alpha line, and the lack of Ly beta, we argue that the Ly alpha photons have emerged through a neutral column of N_H ~ 2.5 x 10^{25}/m^2, possibly located within the AGN narrow-line region as argued in several high redshift radiogalaxies. (ii) The resonant O VI 1032,1036ang doublet (previously identified as Ly beta) is in an optically thick (1:1) ratio. At face value this implies an an extreme density (n_e ~ 10^{17}/m^3) more typical of broad line region clouds. However, we attribute this instead to the damping wings of Ly beta from the resonant absorption. (iii) A tentative detection of HeII 1086 suggests little extinction in the rest-frame ultraviolet.Comment: Accepted for publication in MNRAS. Uses BoxedEPS (included

    Unveiling Dust-enshrouded Star Formation in the Early Universe: a Sub-mm Survey of the Hubble Deep Field

    Get PDF
    The advent of sensitive sub-mm array cameras now allows a proper census of dust-enshrouded massive star-formation in very distant galaxies, previously hidden activity to which even the faintest optical images are insensitive. We present the deepest sub-mm survey of the sky to date, taken with the SCUBA camera on the James Clerk Maxwell Telescope and centred on the Hubble Deep Field. The high source density found in this image implies that the survey is confusion-limited below a flux density of 2 mJy. However, within the central 80 arcsec radius independent analyses yield 5 reproducible sources with S(850um) > 2 mJy which simulations indicate can be ascribed to individual galaxies. We give positions and flux densities for these, and furthermore show using multi-frequency photometric data that the brightest sources in our map lie at redshifts z~3. These results lead to integral source counts which are completely inconsistent with a no-evolution model, and imply that massive star-formation activity continues at redshifts > 2. The combined brightness of the 5 most secure sources in our map is sufficient to account for 30 - 50% of the previously unresolved sub-mm background, and we estimate statistically that the entire background is resolved at about the 0.3 mJy level. Finally we discuss possible optical identifications and redshift estimates for the brightest sources. One source appears to be associated with an extreme starburst galaxy at z~1, whilst the remaining four appear to lie in the redshift range 2 < z < 4. This implies a star-formation density over this redshift range that is at least five times higher than that inferred from the ultraviolet output of HDF galaxies.Comment: 19 pages, 6 figures (to appear as a Nature Article

    A Submillimetre Survey of the Hubble Deep Field: Unveiling Dust-Enshrouded Star Formation in the Early Universe

    Get PDF
    The advent of sensitive sub-mm array cameras now allows a proper census of dust-enshrouded massive star-formation in very distant galaxies, previously hidden activity to which even the deepest optical images are insensitive. We present the deepest sub-mm survey, taken with the SCUBA camera on the James Clerk Maxwell Telescope (JCMT) and centred on the Hubble Deep Field (HDF). The high source density on this image implies that the survey is confusion-limited below a flux density of 2 mJy. However within the central 80 arcsec radius independent analyses yield 5 reproducible sources with S(850um) > 2 mJy which simulations indicate can be ascribed to individual galaxies. These data lead to integral source counts which are completely inconsistent with a no evolution model, whilst the combined brightness of the 5 most secure sources in our map is sufficient to account for 30-50% of the previously unresolved sub-mm background, and statistically the entire background is resolved at about the 0.3 mJy level. Four of the five brightest sources appear to be associated with galaxies which lie in the redshift range 2 < z < 4. With the caveat that this is a small sample of sources detected in a small survey area, these submm data imply a star-formation density over this redshift range that is at least five times higher than that inferred from the rest-frame ultraviolet output of HDF galaxies.Comment: to appear in the proceedings of `The Birth of Galaxies', Xth Rencontres de Blois, 4 pages, 1 postscript figure, uses blois.sty (included

    The Sloan Digital Sky Survey: The Cosmic Spectrum and Star-Formation History

    Get PDF
    We present a determination of the `Cosmic Optical Spectrum' of the Universe, i.e. the ensemble emission from galaxies, as determined from the red-selected Sloan Digital Sky Survey main galaxy sample and compare with previous results of the blue-selected 2dF Galaxy Redshift Survey. Broadly we find good agreement in both the spectrum and the derived star-formation histories. If we use a power-law star-formation history model where star-formation rate (1+z)β\propto (1+z)^\beta out to z=1, then we find that β\beta of 2 to 3 is still the most likely model and there is no evidence for current surveys missing large amounts of star formation at high redshift. In particular `Fossil Cosmology' of the local universe gives measures of star-formation history which are consistent with direct observations at high redshift. Using the photometry of SDSS we are able to derive the cosmic spectrum in absolute units (i.e.WA˚ W \AA^{-1}Mpc Mpc^{-3})at25A˚resolutionandfindgoodagreementwithpublishedbroadbandluminositydensities.ForaSalpeterIMFthebestfitstellarmass/lightratiois3.77.5) at 2--5\AA resolution and find good agreement with published broad-band luminosity densities. For a Salpeter IMF the best fit stellar mass/light ratio is 3.7--7.5 \Msun/\Lsunintherband(correspondingto in the r-band (corresponding to \omstars h = 0.00250.0055)andfromboththestellaremissionhistoryandtheH--0.0055) and from both the stellar emission history and the H\alphaluminositydensityindependentlywefindacosmologicalstarformationrateof0.030.04h luminosity density independently we find a cosmological star-formation rate of 0.03--0.04 h \Msunyr yr^{-1}Mpc Mpc^{-3}$ today.Comment: 17 pages, 11 figures, ApJ in press (April 10th 2003

    Timeline analysis and wavelet multiscale analysis of the AKARI All-Sky Survey at 90 micron

    Get PDF
    We present a careful analysis of the point source detection limit of the AKARI All-Sky Survey in the WIDE-S 90 μ\mum band near the North Ecliptic Pole (NEP). Timeline Analysis is used to detect IRAS sources and then a conversion factor is derived to transform the peak timeline signal to the interpolated 90 μ\mum flux of a source. Combined with a robust noise measurement, the point source flux detection limit at S/N >5>5 for a single detector row is 1.1±0.11.1\pm0.1 Jy which corresponds to a point source detection limit of the survey of \sim0.4 Jy. Wavelet transform offers a multiscale representation of the Time Series Data (TSD). We calculate the continuous wavelet transform of the TSD and then search for significant wavelet coefficients considered as potential source detections. To discriminate real sources from spurious or moving objects, only sources with confirmation are selected. In our multiscale analysis, IRAS sources selected above 4σ4\sigma can be identified as the only real sources at the Point Source Scales. We also investigate the correlation between the non-IRAS sources detected in Timeline Analysis and cirrus emission using wavelet transform and contour plots of wavelet power spectrum. It is shown that the non-IRAS sources are most likely to be caused by excessive noise over a large range of spatial scales rather than real extended structures such as cirrus clouds.Comment: 16 pages, 19 figures, 5 tables, accepted for publication in MNRA
    corecore