449 research outputs found

    The evolution of radiation towards thermal equilibrium: A soluble model which illustrates the foundations of Statistical Mechanics

    Full text link
    In 1916 Einstein introduced the first rules for a quantum theory of electromagnetic radiation, and he applied them to a model of matter in thermal equilibrium with radiation to derive Planck's black-body formula. Einstein's treatment is extended here to time-dependent stochastic variables, which leads to a master equation for the probability distribution that describes the irreversible approach of Einstein's model towards thermal equilibrium, and elucidates aspects of the foundation of statistical mechanics. An analytic solution of this equation is obtained in the Fokker-Planck approximation which is in excellent agreement with numerical results. At equilibrium, it is shown that the probability distribution is proportional to the total number of microstates for a given configuration, in accordance with Boltzmann's fundamental postulate of equal a priori probabilities for these states. While the counting of these configurations depends on particle statistics- Boltzmann, Bose-Einstein, or Fermi-Dirac - the corresponding probability is determined here by the dynamics which are embodied in the form of Einstein's quantum transition probabilities for the emission and absorption of radiation. In a special limit, it is shown that the photons in Einstein's model can act as a thermal bath for the evolution of the atoms towards the canonical equilibrium distribution of Gibbs. In this limit, the present model is mathematically equivalent to an extended version of the Ehrenfests' ``dog-flea'' model, which has been discussed recently by Ambegaokar and Clerk

    Energy conservation and equivalence principle in General Relativity

    Full text link
    The generalized Stokes theorem (connecting integrals of dimensions 3 and 4) is formulated in a curved space-time in terms of paths in Minkowski space (forming Path Group). A covariant integral form of the conservation law for the energy-momentum of matter is then derived in General Relativity. It extends Einstein's equivalence principle on the energy conservation, since it formulates the conservation law for the energy-momentum of matter without explicit including the gravitational field in the formulation.Comment: 9 pages, Latex, one figur

    EPR effect in gravitational field: nature of non-locality

    Get PDF
    The realization of the Einstein-Podolsky-Rosen effect by the correlation of spin projections of two particles created in the decay of a single scalar particle is considered for particles propagating in gravitational field. The absence of a global definition of spatial directions makes it unclear whether the correlation may exist in this case and, if yes, what directions in distant regions must be correlated. It is shown that in a gravitational field an approximate correlation may exist and the correlated directions are connected with each other by the parallel transport along the world lines of the particles. The reason for this is that the actual origin of the quantum non-locality is founded in local processes.Comment: 12 pages, LATE

    Princess and the Pea at the nanoscale: Wrinkling and delamination of graphene on nanoparticles

    Get PDF
    Thin membranes exhibit complex responses to external forces or geometrical constraints. A familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, resulting from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles. At small nanoparticle density monolayer graphene adheres to the substrate, detached only in small regions around the nanoparticles. With increasing nanoparticle density, we observe the formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, global delamination from the substrate is observed. The observations can be well understood within a continuum elastic model and have important implications for strain-engineering the electronic properties of graphene.Comment: 11 pages, 8 figures. Accepted for publication in Physical Review

    Bounds on the nonminimal coupling of the Higgs Boson to gravity

    Get PDF
    We derive the first bound on the value of the Higgs boson nonminimal coupling to the Ricci scalar. We show that the recent discovery of the Higgs boson at the Large Hadron Collider at CERN implies that the nonminimal coupling is smaller than 2.6×10^15

    The influence of modified gravitational fields on motions of Keplerian objects at the far-edge of the Solar System

    Full text link
    We investigated the impact of three different modifications of Newtonian gravity on motions of Keplerian objects within the Solar System. These objects are located at distances of the order of the distance to the Oort cloud. With these three modifications we took into account a heliocentric Dark-Matter halo as was indicated by Diemand et al, Modified Newtonian Dynamics (MOND) and a vacuum-induced force due to a locally negative cosmological constant Λ−\Lambda_- derived by Fahr & Siewert. In gravitationally bound systems it turns out that all three modifications deliver the same qualitative results: Initially circular orbits for the pure Newtonian case are forced to convert into ellipses with perihelion migrations. The quantitative consideration, however, of the orbital parameters showed strong differences between MOND on the one side, and Dark-Matter and Λ−\Lambda_- effects on the other side.Comment: 9 pages, 16 figures, MNRAS accepte

    Cluster-state quantum computation

    Full text link
    This article is a short introduction to and review of the cluster-state model of quantum computation, in which coherent quantum information processing is accomplished via a sequence of single-qubit measurements applied to a fixed quantum state known as a cluster state. We also discuss a few novel properties of the model, including a proof that the cluster state cannot occur as the exact ground state of any naturally occurring physical system, and a proof that measurements on any quantum state which is linearly prepared in one dimension can be efficiently simulated on a classical computer, and thus are not candidates for use as a substrate for quantum computation.Comment: 15 pages, resubmitted version accepted to Rev. Math. Phy

    Bose-Einstein condensation of stationary-light polaritons

    Full text link
    We propose and analyze a mechanism for Bose-Einstein condensation of stationary dark-state polaritons. Dark-state polaritons (DSPs) are formed in the interaction of light with laser-driven 3-level Lambda-type atoms and are the basis of phenomena such as electromagnetically induced transparency (EIT), ultra-slow and stored light. They have long intrinsic lifetimes and in a stationary set-up with two counterpropagating control fields of equal intensity have a 3D quadratic dispersion profile with variable effective mass. Since DSPs are bosons they can undergo a Bose-Einstein condensation at a critical temperature which can be many orders of magnitude larger than that of atoms. We show that thermalization of polaritons can occur via elastic collisions mediated by a resonantly enhanced optical Kerr nonlinearity on a time scale short compared to the decay time. Finally condensation can be observed by turning stationary into propagating polaritons and monitoring the emitted light.Comment: 4 pages, 3 figure

    Energy-Momentum Tensor for the Electromagnetic Field in a Dielectric

    Full text link
    The total momentum of a thermodynamically closed system is unique, as is the total energy. Nevertheless, there is continuing confusion concerning the correct form of the momentum and the energy-momentum tensor for an electromagnetic field interacting with a linear dielectric medium. Here we investigate the energy and momentum in a closed system composed of a propagating electromagnetic field and a negligibly reflecting dielectric. The Gordon momentum is easily identified as the total momentum by the fact that it is, by virtue of being invariant in time, conserved. We construct continuity equations for the energy and the Gordon momentum and use the continuity equations to construct an array that has the properties of a traceless, diagonally symmetric energy-momentum tensor. Then the century-old Abraham-Minkowski momentum controversy can be viewed as a consequence of attempting to construct an energy-momentum tensor from continuity equations that contain densities that correspond to nonconserved quantities.Comment: added publication informatio

    Fluctuations of an Atomic Ledge Bordering a Crystalline Facet

    Full text link
    When a high symmetry facet joins the rounded part of a crystal, the step line density vanishes as sqrt(r) with r denoting the distance from the facet edge. This means that the ledge bordering the facet has a lot of space to meander as caused by thermal activation. We investigate the statistical properties of the border ledge fluctuations. In the scaling regime they turn out to be non-Gaussian and related to the edge statistics of GUE multi-matrix models.Comment: Version with major revisions -- RevTeX, 4 pages, 2 figure
    • …
    corecore