419 research outputs found

    Needs and challenges in model testing of wave and tidal energy device

    Get PDF
    Evaluation of the viability of wave and tidal energy converters represent the main challenge for marine energy developers and government agencies. Although the concept of wave energy conversion is very intuitive, its performance evaluation is complicated by different factors including evaluation of efficiency, components performance and maintenance costs. These factors do not scale up directly from lab experiments. Testing at 1/100 or smaller ratios cannot resolve critical details or satisfy required dynamic similarities. Full-scale testing is expensive. Additionally, varying the designs may not be an option. This implies a need for testing at larger scales. In controlled tests at 1/50 or larger scales, WEC responses can be determined to the point where they can be scaled up and modes of failure can be assessed. This presentation discusses dynamic similarity, scaling laws and how these can be applied to wave and tidal energy devices. Test methodologies, standards and specialized instrumentation, understanding and interpretation of results will also be discussed. The presentation is based on knowledge gained from tests conducted on numerous scale model hull forms and marine platforms in the towing/wave tank of the Davidson Laboratory that have resulted in military full-scale prototypes and commercial systems. Please click Additional Files below to see the full abstract

    accelerating wrf i/o performance with adios2 and network-based streaming

    Full text link
    With the approach of Exascale computing power for large-scale High Performance Computing (HPC) clusters, the gap between compute capabilities and storage systems is growing larger. This is particularly problematic for the Weather Research and Forecasting Model (WRF), a widely-used HPC application for high-resolution forecasting and research that produces sizable datasets, especially when analyzing transient weather phenomena. Despite this issue, the I/O modules within WRF have not been updated in the past ten years, resulting in subpar parallel I/O performance. This research paper demonstrates the positive impact of integrating ADIOS2, a next-generation parallel I/O framework, as a new I/O backend option in WRF. It goes into detail about the challenges encountered during the integration process and how they were addressed. The resulting I/O times show an over tenfold improvement when using ADIOS2 compared to traditional MPI-I/O based solutions. Furthermore, the study highlights the new features available to WRF users worldwide, such as the Sustainable Staging Transport (SST) enabling Unified Communication X (UCX) DataTransport, the node-local burst buffer write capabilities and in-line lossless compression capabilities of ADIOS2. Additionally, the research shows how ADIOS2's in-situ analysis capabilities can be smoothly integrated with a simple WRF forecasting pipeline, resulting in a significant improvement in overall time to solution. This study serves as a reminder to legacy HPC applications that incorporating modern libraries and tools can lead to considerable performance enhancements with minimal changes to the core application.Comment: arXiv admin note: text overlap with arXiv:2201.0822

    Sequential coronagraphic low-order wavefront control

    Full text link
    Coronagraphs are highly sensitive to wavefront errors, with performance degrading rapidly in the presence of low-order aberrations. Correcting these aberrations at the coronagraphic focal plane is key to optimal performance. We present two new methods based on the sequential phase diversity approach of the "Fast and Furious" algorithm that can correct low-order aberrations through a coronagraph. The first, called "2 Fast 2 Furious," is an extension of Fast and Furious to all coronagraphs with even symmetry. The second, "Tokyo Drift," uses a deep learning approach and works with general coronagraphic systems, including those with complex phase masks. Both algorithms have 100% science uptime and require effectively no diversity frames or additional hardware beyond the deformable mirror and science camera, making them suitable for many high contrast imaging systems. We present theory, simulations, and preliminary lab results demonstrating their performance.Comment: 15 pages, 10 figures, AO4ELT7 conference proceeding

    Observing Exoplanets with High-Dispersion Coronagraphy. II. Demonstration of an Active Single-Mode Fiber Injection Unit

    Get PDF
    High-dispersion coronagraphy (HDC) optimally combines high contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway towards fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly-imaged planet light into a single-mode fiber, linking a high-contrast adaptively-corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.Comment: 10 pages, 7 figures, accepted by Ap

    Ultracool Subdwarfs: The Halo Population Down to the Substellar Limit

    Full text link
    Ultracool subdwarfs are low luminosity, late-type M and L dwarfs that exhibit spectroscopic indications of subsolar metallicity and halo kinematics. Their recent discovery and ongoing investigation have led to new insights into the role of metallicity in the opacity structure, chemistry (e.g. dust formation) and evolution of low-temperature atmospheres; the long-term evolution of magnetic activity and angular momentum amongst the lowest-mass stars; the form of the halo luminosity and mass functions down to the hydrogen-burning mass limit; and even fundamental issues such as spectral classification and absolute brightness scales. This Splinter Session was devoted to bringing advances in observational and theoretical ultracool subdwarf research to the attention of the low-mass stellar and brown dwarf communities, as well as to share results among ultracool subdwarf enthusiasts.Comment: 8 pages, 5 figures, Splinter Session contribution for Cool Stars 15 (AIP formatting

    Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes

    Get PDF
    Direct detection, also known as direct imaging, is a method for discovering and characterizing the atmospheres of planets at intermediate and wide separations. It is the only means of obtaining spectra of non-transiting exoplanets. Characterizing the atmospheres of planets in the <5 AU regime, where RV surveys have revealed an abundance of other worlds, requires a 30-m-class aperture in combination with an advanced adaptive optics system, coronagraph, and suite of spectrometers and imagers - this concept underlies planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the GMT (GMagAO-X). These instruments could provide astrometry, photometry, and spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas giants. For the first time habitable zone exoplanets will become accessible to direct imaging, and these instruments have the potential to detect and characterize the innermost regions of nearby M-dwarf planetary systems in reflected light. High-resolution spectroscopy will not only illuminate the physics and chemistry of exo-atmospheres, but may also probe rocky, temperate worlds for signs of life in the form of atmospheric biomarkers (combinations of water, oxygen and other molecular species). By completing the census of non-transiting worlds at a range of separations from their host stars, these instruments will provide the final pieces to the puzzle of planetary demographics. This whitepaper explores the science goals of direct imaging on 30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of the NA

    Four quasars above redshift 6 discovered by the Canada-France High-z Quasar Survey

    Get PDF
    The Canada-France High-z Quasar Survey (CFHQS) is an optical survey designed to locate quasars during the epoch of reionization. In this paper we present the discovery of the first four CFHQS quasars at redshift greater than 6, including the most distant known quasar, CFHQS J2329-0301 at z=6.43. We describe the observational method used to identify the quasars and present optical, infrared, and millimeter photometry and optical and near-infrared spectroscopy. We investigate the dust properties of these quasars finding an unusual dust extinction curve for one quasar and a high far-infrared luminosity due to dust emission for another. The mean millimeter continuum flux for CFHQS quasars is substantially lower than that for SDSS quasars at the same redshift, likely due to a correlation with quasar UV luminosity. For two quasars with sufficiently high signal-to-noise optical spectra, we use the spectra to investigate the ionization state of hydrogen at z>5. For CFHQS J1509-1749 at z=6.12, we find significant evolution (beyond a simple extrapolation of lower redshift data) in the Gunn-Peterson optical depth at z>5.4. The line-of-sight to this quasar has one of the highest known optical depths at z~5.8. An analysis of the sizes of the highly-ionized near-zones in the spectra of two quasars at z=6.12 and z=6.43 suggest the IGM surrounding these quasars was substantially ionized before these quasars turned on. Together, these observations point towards an extended reionization process, but we caution that cosmic variance is still a major limitation in z>6 quasar observations.Comment: 15 pages, 9 figures, AJ, in press, minor changes to previous versio
    • 

    corecore