18 research outputs found
Bulge formed cooling channels with a variable lead helix on a hollow body of revolution
A method of constructing a nozzle having cooling channels comprises a shell and a liner which are formed into a body of revolution having an axis of revolution. Helical welds are formed to hold the liner and shell to each other with a channel position being defined between each pair of helical welds. Pressurized fluid which may be a gas or a liquid, is introduced between the weld pairs to outwardly bulge the material of at least one of the liner and shell to define the channels
A density functional theory analysis of the adsorption and surface chemistry of inorganic iodine species on graphitea
In the event of a nuclear accident, fission products may be released into the environment. The release of 131I is of particular concern to human health. Iodine can be captured using a number of materials and frequently, this is accomplished with activated carbon impregnated with organic bases. Previous studies have used DFT and the graphite (0001) surface as a surrogate for adsorption, those studies focus on the species Iβ’, I2, and CH3I. In this work we perform an ab initio study of the adsorption onto the surface of a graphite sheet of I2, CH3I, and inorganic acidic iodine species (HI, HOI, HIO2, and HIO3), which were selected to examine the possible effect of oxidation state on adsorption. The PBE exchange-correlation functional with D3 dispersion was employed. It was found that for molecular iodine, the iodine atoms tended to either situate above the center of a hexagonal site on the graphite or directly atop a carbon atom with the lighter components resting closer to the graphite. For each species the relative binding energies spanned the range of 21β33Β kJΒ mol-1 and graphite-iodine distance was in the range of 3.52β3.93Β Γ
. In all cases we found no significant charge transfer between the iodine species and the graphite, thus we conclude that all the iodine species studied undergo strong physisorption to the graphite
Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism
The evolution of parasitism is a recurrent event in the history of life and a core problem in evolutionary biology. Trypanosomatids are important parasites and include the human pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., which in humans cause African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. Genome comparison between trypanosomatids reveals that these parasites have evolved specialized cell-surface protein families, overlaid on a well-conserved cell template. Understanding how these features evolved and which ones are specifically associated with parasitism requires comparison with related non-parasites. We have produced genome sequences for Bodo saltans, the closest known non-parasitic relative of trypanosomatids, and a second bodonid, Trypanoplasma borreli. Here we show how genomic reduction and innovation contributed to the character of trypanosomatid genomes. We show that gene loss has βstreamlinedβ trypanosomatid genomes, particularly with respect to macromolecular degradation and ion transport, but consistent with a widespread loss of functional redundancy, while adaptive radiations of gene families involved in membrane function provide the principal innovations in trypanosomatid evolution. Gene gain and loss continued during trypanosomatid diversification, resulting in the asymmetric assortment of ancestral characters such as peptidases between Trypanosoma and Leishmania, genomic differences that were subsequently amplified by lineage-specific innovations after divergence. Finally, we show how species-specific, cell-surface gene families (DGF-1 and PSA) with no apparent structural similarity are independent derivations of a common ancestral form, which we call βbodonin.β This new evidence defines the parasitic innovations of trypanosomatid genomes, revealing how a free-living phagotroph became adapted to exploiting hostile host environments
Mapping the Hsp90 Genetic Interaction Network in Candida albicans Reveals Environmental Contingency and Rewired Circuitry
The molecular chaperone Hsp90 regulates the folding of diverse signal transducers in all eukaryotes, profoundly affecting cellular circuitry. In fungi, Hsp90 influences development, drug resistance, and evolution. Hsp90 interacts with βΌ10% of the proteome in the model yeast Saccharomyces cerevisiae, while only two interactions have been identified in Candida albicans, the leading fungal pathogen of humans. Utilizing a chemical genomic approach, we mapped the C. albicans Hsp90 interaction network under diverse stress conditions. The chaperone network is environmentally contingent, and most of the 226 genetic interactors are important for growth only under specific conditions, suggesting that they operate downstream of Hsp90, as with the MAPK Hog1. Few interactors are important for growth in many environments, and these are poised to operate upstream of Hsp90, as with the protein kinase CK2 and the transcription factor Ahr1. We establish environmental contingency in the first chaperone network of a fungal pathogen, novel effectors upstream and downstream of Hsp90, and network rewiring over evolutionary time
Network Compression as a Quality Measure for Protein Interaction Networks
With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients