413 research outputs found
Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background DNA methylation has been linked to genome regulation and dysregulation in health and disease respectively, and methods for characterizing genomic DNA methylation patterns are rapidly emerging. We have developed/refined methods for enrichment of methylated genomic fragments using the methyl-binding domain of the human MBD2 protein (MBD2-MBD) followed by analysis with high-density tiling microarrays. This MBD-chip approach was used to characterize DNA methylation patterns across all non-repetitive sequences of human chromosomes 21 and 22 at high-resolution in normal and malignant prostate cells. Results Examining this data using computational methods that were designed specifically for DNA methylation tiling array data revealed widespread methylation of both gene promoter and non-promoter regions in cancer and normal cells. In addition to identifying several novel cancer hypermethylated 5' gene upstream regions that mediated epigenetic gene silencing, we also found several hypermethylated 3' gene downstream, intragenic and intergenic regions. The hypermethylated intragenic regions were highly enriched for overlap with intron-exon boundaries, suggesting a possible role in regulation of alternative transcriptional start sites, exon usage and/or splicing. The hypermethylated intergenic regions showed significant enrichment for conservation across vertebrate species. A sampling of these newly identified promoter (ADAMTS1 and SCARF2 genes) and non-promoter (downstream or within DSCR9, C21orf57 and HLCS genes) hypermethylated regions were effective in distinguishing malignant from normal prostate tissues and/or cell lines. Conclusions Comparison of chromosome-wide DNA methylation patterns in normal and malignant prostate cells revealed significant methylation of gene-proximal and conserved intergenic sequences. Such analyses can be easily extended for genome-wide methylation analysis in health and disease.Published versio
Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation
Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10 000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation
Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma
Introduction
Diffuse intrinsic pontine glioma (DIPG) is a malignant pediatric brain tumor associated with dismal outcome. Recent high-throughput molecular studies have shown a high frequency of mutations in histone-encoding genes (H3F3A and HIST1B) and distinctive epigenetic alterations in these tumors. Epigenetic alterations described in DIPG include global DNA hypomethylation. In addition to the generally repressive methylcytosine DNA alteration, 5-hydroxymethylation of cytosine (5hmC) is recognized as an epigenetic mark associated with active chromatin. We hypothesized that in addition to alterations in DNA methylation, that there would be changes in 5hmC. To test this hypothesis, we performed immunohistochemical studies to compare epigenetic alterations in DIPG to extrapontine adult and pediatric glioblastoma (GBM) and normal brain. A total of 124 tumors were scored for histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 9 trimethylation (H3K9me3) and 104 for 5hmC and 5-methylcytosine (5mC). An H-score was derived by multiplying intensity (0–2) by percentage of positive tumor nuclei (0-100%). Results
We identified decreased H3K27me3 in the DIPG cohort compared to pediatric GBM (p \u3c 0.01), adult GBM (p \u3c 0.0001) and normal brain (p \u3c 0.0001). H3K9me3 was not significantly different between tumor types. Global DNA methylation as measured by 5mC levels were significantly lower in DIPG compared to pediatric GBM (p \u3c 0.001), adult GBM (p \u3c 0.01), and normal brain (p \u3c 0.01). Conversely, 5hmC levels were significantly higher in DIPG compared to pediatric GBM (p \u3c 0.0001) and adult GBM (p \u3c 0.0001). Additionally, in an independent set of DIPG tumor samples, TET1 andTET3 mRNAs were found to be overexpressed relative to matched normal brain. Conclusions
Our findings extend the immunohistochemical study of epigenetic alterations in archival tissue to DIPG specimens. Low H3K27me3, decreased 5mC and increased 5hmC are characteristic of DIPG in comparison with extrapontine GBM. In DIPG, the relative imbalance of 5mC compared to 5hmC may represent an opportunity for therapeutic intervention
Projected outcomes of reduced-biopsy management of Grade Group 1 prostate cancer:implications for relabeling
Background: Implications of relabeling Grade Group 1 prostate cancer as noncancer will depend on the recommended active surveillance strategy. Whether relabeling should prompt deintensifying, prostate-specific antigen (PSA)–based active monitoring approaches is unclear. We investigated outcomes of biopsy-based active surveillance strategies vs PSA-based active monitoring for Grade Group 1 diagnoses under different patient adherence rates. Methods: We analyzed longitudinal PSA levels and time to Grade Group 2 or higher reclassification among 850 patients with a diagnosis of Grade Group 1 disease from the Canary Prostate Active Surveillance Study (2008-2013). We then simulated 20 000 patients over 12 years, comparing Grade Group 2 or higher detection under biennial biopsy against 3 PSA-based strategies: (1) PSA (biopsy for PSA change ≥20% per year), (2) PSA plus magnetic resonance imaging (magnetic resonance imaging for PSA change ≥20% per year and biopsy for Prostate Imaging Reporting & Data System ≥3), and (3) predicted risk (biopsy for predicted upgrading risk ≥10%). Results: Under biennial biopsies and 20% dropout to active treatment, 17% of patients had a 2-year or longer delay in Grade Group 2 or higher detection. The PSA strategy reduced the number of biopsies by 39% but delayed detection in 32% of patients. The PSA plus magnetic resonance imaging strategy reduced the number of biopsies by 52%, with a 34% delay. The predicted risk strategy reduced the number of biopsies by 31%, with only an 8% delay. These findings are robust to biopsy sensitivity and confirmatory biopsy. Conclusions: Prostate-specific antigen–based active monitoring could substantially reduce biopsy frequency; however, a precision strategy based on an individual upgrading risk is most likely to minimize delays in detection of disease progression. This strategy may be preferred if active surveillance is deintensified under relabeling, provided patient adherence remains unaffected.</p
Non-invasive detection of neuroendocrine prostate cancer through targeted cell-free DNA methylation
Castration-resistant prostate cancer (CRPC) is a heterogeneous disease associated with phenotypic subtypes that drive therapy response and outcome differences. Histologic transformation to castration-resistant neuroendocrine prostate cancer (CRPC-NE) is associated with distinct epigenetic alterations, including changes in DNA methylation. The current diagnosis of CRPC-NE is challenging and relies on metastatic biopsy. We developed a targeted DNA methylation assay to detect CRPC-NE using plasma cell-free DNA (cfDNA). The assay quantifies tumor content and provides a phenotype evidence score that captures diverse CRPC phenotypes, leveraging regions to inform transcriptional state. We tested the design in independent clinical cohorts (n=222 plasma samples) and qualified it achieving an AUC>0.93 for detecting pathology-confirmed CRPC-NE (n=136). Methylation-defined cfDNA tumor content was associated with clinical outcomes in two prospective phase II clinical trials geared towards aggressive variant CRPC and CRPC-NE. These data support the application of targeted DNA methylation for CRPC-NE detection and patient stratification
An Inflammatory Cascade Leading to Hyperresistinemia in Humans
BACKGROUND: Obesity, the most common cause of insulin resistance, is increasingly recognized as a low-grade inflammatory state. Adipocyte-derived resistin is a circulating protein implicated in insulin resistance in rodents, but the role of human resistin is uncertain because it is produced largely by macrophages. METHODS AND FINDINGS: The effect of endotoxin and cytokines on resistin gene and protein expression was studied in human primary blood monocytes differentiated into macrophages and in healthy human participants. Inflammatory endotoxin induced resistin in primary human macrophages via a cascade involving the secretion of inflammatory cytokines that circulate at increased levels in individuals with obesity. Induction of resistin was attenuated by drugs with dual insulin-sensitizing and anti-inflammatory properties that converge on NF-κB. In human study participants, experimental endotoxemia, which produces an insulin-resistant state, causes a dramatic rise in circulating resistin levels. Moreover, in patients with type 2 diabetes, serum resistin levels are correlated with levels of soluble tumor necrosis factor α receptor, an inflammatory marker linked to obesity, insulin resistance, and atherosclerosis. CONCLUSIONS: Inflammation is a hyperresistinemic state in humans, and cytokine induction of resistin may contribute to insulin resistance in endotoxemia, obesity, and other inflammatory states
Role of TMPRSS2-ERG Gene Fusion in Negative Regulation of PSMA Expression
Prostate specific membrane antigen (PSMA) is overexpressed in prostatic adenocarcinoma (CaP), and its expression is negatively regulated by androgen stimulation. However, it is still unclear which factors are involved in this downregulation. TMPRSS2-ERG fusion is the most common known gene rearrangement in prostate carcinoma. Androgen stimulation can increase expression of the TMPRSS2-ERG fusion in fusion positive prostate cancer cells. The purpose of this investigation is to determine whether PSMA expression can be regulated by the TMPRSS2-ERG gene fusion. We employed two PSMA positive cell lines: VCaP cells, which harbor TMPRSS2-ERG fusion, and LNCaP cells, which lack the fusion. After 24 hours of androgen treatment, TMPRSS2-ERG mRNA level was increased in VCaP cells. PSMA mRNA level was dramatically decreased in VCaP cells, while it only has moderate change in LNCaP cells. Treatment with the androgen antagonist flutamide partially restored PSMA expression in androgen-treated VCaP cells. Knocking down ERG by siRNA in VCaP cells enhances PSMA expression both in the presence and absence of synthetic androgen R1881. Overexpressing TMPRSS2-ERG fusions in LNCaP cells downregulated PSMA both in the presence or absence of R1881, while overexpressing wild type ERG did not. Using PSMA-based luciferase reporter assays, we found TMPRSS2-ERG fusion can inhibit PSMA activity at the transcriptional level. Our data indicated that downregulation of PSMA in androgen-treated VCaP cells appears partially mediated by TMPRSS2-ERG gene fusion
A human model of inflammatory cardio-metabolic dysfunction; a double blind placebo-controlled crossover trial
Explaining gender differences in non-fatal suicidal behaviour among adolescents: a population-based study
<p>Abstract</p> <p>Background</p> <p>While suicide is the second leading cause of death among young people in most industrial countries, non-fatal suicidal behaviour is also a very important public health concern among adolescents. The aim of this study was to investigate gender differences in prevalence and emotional and behavioural correlates of suicidal behaviour in a representative school-based sample of adolescents.</p> <p>Methods</p> <p>A cross-sectional design was used to assess suicidal behaviour and various areas of emotional and behavioural problems by using a self-report booklet including the Youth Self-Report. One hundred sixteen schools in a region of Southern Germany agreed to participate. A representative sample of 5,512 ninth-grade students was studied. Mean age was 14.8 years (SD 0.73); 49.8% were female.</p> <p>Results</p> <p>Serious suicidal thoughts were reported by 19.8% of the female students and 10.8% of the females had ever attempted suicide. In the male group, 9.3% had a history of suicidal thoughts and 4.9% had previously attempted suicide. Internalizing emotional and behavioural problems were shown to be higher in the female group (difference of the group means 4.41) while externalizing emotional and behavioural problems slightly predominated in male students (difference of the group means -0.65). However, the total rate of emotional and behavioural problems was significantly higher in the adolescent female group (difference of the group means 4.98). Using logistic regression models with suicidal thoughts or attempted suicide as dependent variables, the pseudo-R<sup>2</sup> of gender alone was only 2.7% or 2.3%, while it was 30% or 23.2% for emotional and behavioural problems measured by the YSR syndrome scales. By adding gender to the emotional and behavioural problems only an additional 0.3% of information could be explained.</p> <p>Conclusions</p> <p>The findings suggest that gender differences in non-fatal suicidal behaviour among adolescents can to a large extent be explained by the gender differences in emotional and behavioural problems during this age.</p
- …
