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INTRODUCTION
Castration-resistant prostate cancer (CRPC) is a heteroge-

neous disease in which treatment resistance can arise through 
multiple mechanisms (1–3). Although the majority of CRPC 
is driven by androgen receptor (AR) signaling, up to 15% to 
20% of patients develop AR independence (4). AR independ-
ence has been associated with aggressive clinical features and 
changes in tumor phenotype, including histologic transfor-
mation from a castration-resistant adenocarcinoma (CRPC-
Adeno) to neuroendocrine prostate cancer (CRPC-NE) arising 

through lineage plasticity and divergent clonal evolution (3, 
5–7). Patients with CRPC-NE are often managed aggressively 
with chemotherapy regimens similar to small-cell lung cancer 
(SCLC), and several CRPC-NE–directed clinical trials are also 
ongoing. The current diagnosis of CRPC-NE remains chal-
lenging because of the need for metastatic biopsy as well as 
intrapatient tumor heterogeneity.

DNA sequencing of plasma cell–free DNA (cfDNA) is a 
noninvasive tool to detect somatic alterations in the can-
cer (8). However, cancer-specific mutations or copy-number 
changes are only modestly enriched in CRPC-NE compared 
with CRPC-Adeno (3, 9). Conversely, we and others have 
observed extensive DNA methylation changes associated 
with CRPC-NE (3, 10), and such changes can be detected in 
cfDNA (11, 12). DNA methylation in humans is mostly pre-
sent at CpG dinucleotides and is associated with a wide range 
of biological processes, including regulation of gene expres-
sion, cell fate, and genomic stability (13). Furthermore, DNA 
methylation is highly tissue-specific and provides a robust 
signal to deconvolve the tissue of origin (14, 15), thereby 
allowing the enhanced detection of low cancer fractions in 
the circulation (16, 17), and has been successfully applied 
for early detection and monitoring (18, 19). As previously 
reported, DNA methylation at base resolution can be meas-
ured with bisulfite sequencing, which provides a fraction of 
methylated cytosines for each covered CpG in the form of a β 
value ranging from 0 (no methylation) to 1 (complete meth-
ylation). In principle, approaches such as whole-genome 
bisulfite cfDNA sequencing (WGBS) may offer a comprehen-
sive picture of the patient’s disease status with optimal infor-
mation on methylation content. In practice, only low-pass 
variants of WGBS are suitable for large-scale clinical studies, 
given the cost of high-depth whole-genome sequencing. Low-
pass sequencing suffers from low granularity and captures 
all regions at coarse resolution. Given that most CpG sites in 
this context are likely noninformative or highly redundant, 
we aimed to reduce the sequencing space to a minimal set 
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of CpGs that can accurately probe advanced prostate cancer 
phenotypes of interest, providing insights into the biologic  
disease state.

In this work, we present the NEuroendocrine detection 
and MOnitoring (NEMO) assay, a targeted DNA methylation 
sequencing panel designed for CRPC disease monitoring and 
neuroendocrine phenotype detection. We selected informa-
tive regions by performing an extensive analysis of published 
datasets from CRPC metastatic tumors (pathologically con-
firmed CRPC-Adeno and CRPC-NE samples), white blood 
cells (WBC), and plasma cfDNA from healthy individuals. 
First, we demonstrated that 53 CpG clusters are sufficient 
to accurately estimate the fraction of cancer-derived DNA 
in cfDNA (tumor content, TC), which we orthogonally vali-
dated through genomic-based tumor content estimation and 
in vitro dilutions. Next, we leveraged the DNA methylation of 
the collection of genomic regions that distinguish CRPC-NE 
from CRPC-Adeno while accounting for the variable tumor 
content in cfDNA. We showcase the capability of the NEMO 
design to detect CRPC-NE in independent datasets, including 
cell lines, organoids, patient-derived xenografts, and patient 
cohorts. The clinical utility of NEMO is demonstrated in its 
application to clinical cohorts from the PRIME consortium, 
Dana-Farber Cancer Institute (DFCI), Weill Cornell Medicine 
(WCM), and two completed clinical trials for aggressive variant 
CRPC: a phase II trial of the aurora kinase A inhibitor alisertib 
(20) and a phase II trial of carboplatin plus docetaxel chemo-
therapy (21). A binary classifier to detect pathology-confirmed 
CRPC-NE cases achieved an AUC of 0.93 [confidence interval 
(CI), 0.88–0.99] across plasma samples with any detectable 
tumor content and an AUC of 0.97 (CI, 0.93–1) for those with 
at least 50% of tumor content, with as few as 25 kbp of genomic 
space (∼1,500 CpGs) required, highlighting the robustness of  
our approach.

RESULTS
Differential Methylation Landscape Along 
Prostate Cancer Evolution

The CRPC spectrum spans multiple phenotypes, with 
distinct subtypes characterized by tumor morphology and 
tumor expression of lineage-specific markers. As in our prior 
studies, we applied a morphologic definition to define CRPC-
NE, which encompasses small-cell carcinoma, large-cell car-
cinoma, and mixed adeno-NE histologies (22). IHC staining 
can support the diagnosis with CRPC-NE as they typically 
express at least one classical NE marker (e.g., INSM1, syn-
aptophysin) and lack expression of the AR and/or canonical 
AR target genes [e.g., TMPRSS2, prostate-specific antigen 
(PSA)]. In contrast, most prostate adenocarcinomas express 
AR and are negative for NE markers, although variations 
may be seen, including double-positive (or amphicrine) 
(AMPC; ARpos, NEpos) and double-negative (DNPC; ARneg, 
NEneg) prostate carcinoma. It is not clear whether these 
other subtypes are distinct entities or lie along a spectrum 
of lineage plasticity as intermediary states toward CRPC-
NE (ref.  23; Fig.  1A), and the clinical implications of the 
various phenotypic subtypes are not well defined. Longi-
tudinal studies confirming the timing and continuum of 
lineage progression toward CRPC-NE are needed. On the 

basis of prior studies (24–26), we hypothesize that changes 
in DNA methylation are acquired during lineage plasticity 
and contribute to the phenotypic state changes that occur 
in advanced prostate cancer. We first analyzed our collec-
tion of tissue-based DNA methylation profiles from nor-
mal prostatic tissues (NT, n =  7), localized prostate cancer 
(PCa, n = 7), CRPC-Adeno (n = 18), and CRPC-NE (n = 10)  
obtained through enhanced Reduced Representation Bisulfite 
Sequencing (eRRBS; ref. 3). Of note, CRPC-NE was defined 
on the basis of tumor morphology using published criteria 
(22) and was not reliant on IHC or transcriptome profiling. 
By using this fairly strict definition to define CRPC-NE–asso-
ciated differentially methylated sites (DMS) and differen-
tially methylated regions (DMR; ref. 27), we could then apply 
this knowledge to diverse phenotypic cohorts of CRPC with-
out bona fide NE morphology to understand how DNA meth-
ylation is reshaped during prostate cancer progression. First, 
considering DMRs, we observed that the fraction of differen-
tially methylated genome is maximal between PCa and NT 
(18% of the genome; tumorigenesis), followed by CRPC-NE 
versus CRPC-Adeno (15.1% of the genome; phenotype transi-
tion; Fig.  1B). Conversely, a smaller fraction of the genome 
is differentially methylated between CRPC-Adeno and PCa 
(3.1% of the genome; metastasis and castration resistance). 
The fraction of DMSs, which demonstrate diverse density 
across the genome, suggests that the tumorigenesis process is 
associated with a higher fraction of DMSs (17.2%) compared 
with metastasis seeding and phenotype transition (3.1% and 
7.7% of the sites, respectively; Fig. 1C). Further characteriza-
tion of DMRs supported those observations (Supplementary 
Fig.  S1A–S1C). Importantly, in all the differential methyla-
tion analyses performed, the majority of CpG sites were con-
sistently methylated across subtypes, suggesting that only a 
small fraction of the sites might be informative for subtype  
classification.

We next focused on the differential methylation between 
CRPC-NE and CRPC-Adeno samples and performed tran-
scription factor motif (TFBS) enrichment analysis around 
DMSs. Motifs enriched at hypermethylated CpGs in CRPC-
NE included known regulators of prostate adenocarcinoma, 
including AR (androgen response element, ARE) and HOXB13, 
as well as REST, which are often downregulated in CRPC-NE 
(ref. 23; Fig. 1D; Supplementary Table S1). Conversely, hypo-
methylated CpGs were enriched for NE-associated transcrip-
tion factor motifs, including ASCL1 and NEUROD1 (24, 
28). We compared the observed enrichments with a paral-
lel analysis of chromatin accessibility data (ref.  25; Assay 
for Transposase-Accessible Chromatin using sequencing; 
ATAC-seq) of preclinical models [patient-derived xenografts 
(PDX), organoids, cell lines] of CRPC-Adeno and CRPC-NE. 
There was concordance (R = 0.57, Pearson correlation) for the 
most hyper- and hypo-accessible TFBS, with similar results 
obtained for the CRPC-NE versus normal comparison (Sup-
plementary Fig. S1D). Overall, this analysis suggests that the 
methylome provides a snapshot of the prostate cancer phe-
notype and related key transcriptional drivers. Only a small 
subset of the DMSs harbour substantial differential meth-
ylation (e.g., 7.5% and 3.1%, respectively, for hypo and hyper 
sites presenting an absolute difference in β greater than 0.5;  
Fig. 1E).

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-23-0754/3403116/cd-23-0754.pdf by U

niversity C
ollege of London user on 22 January 2024



Noninvasive Detection of CRPC-NE from cfDNA Methylation RESEARCH ARTICLE

	 MARCH  2024 CANCER DISCOVERY | OF4 

Design of a Targeted DNA Methylation Panel for 
Tumor Burden and CRPC-NE Detection from cfDNA

On the basis of these observations and the limitations of 
using WGBS of cfDNA as a scalable approach, we developed 
a custom-targeted panel for neuroendocrine detection and 

tumor burden monitoring by probing the most informative 
regions selectively; we named this panel NEMO. The panel is 
built as a collection of region modules with distinct rationale 
in the context of CRPC for detecting phenotypic subtypes 
(Fig. 2A; Supplementary Fig. S2A and S2B). The first module 

Figure 1. Genome-wide DNA methylation reflects the transition from prostate adenocarcinoma to neuroendocrine prostate cancer. A, Potential 
model of castration-resistant prostate cancer (CRPC) disease progression with emphasis on the transition from an AR-positive CRPC-Adeno toward 
AR-negative phenotypes. The top lines indicate a noncomprehensive set of systemic therapies. The bottom bars indicate an overview of the relative 
contribution of selected biological pathways to the corresponding CRPC subtype based on the current literature. The schematic includes a series of 
proposed CRPC subtypes, highlighting two lineage plasticity endpoints: neuroendocrine prostate cancer (CRPC-NE) and double-negative prostate 
cancer (DNPC). Various morphologic or transcriptomic subsets have been proposed as potential intermediary states. ADT, androgen deprivation therapy; 
ARSi, AR signaling inhibitors; HSPCa, hormone-sensitive prostate cancer; AMPC, amphicrine prostate cancer; EMT, epithelial-to-mesenchymal transi-
tion. B, Plot of the genomic burden of DMR obtained with Rockermeth differential methylation analysis for comparisons across progressive prostate 
cancer disease states. The reported fractions are relative to the length of the haploid genome. Normal, benign prostatic tissue. C, Barplot representing 
the number of differentially methylated CpG sites (DMS) detected across progressive prostate cancer disease states as reported in B. The criteria for 
defining differential CpG methylation is based on the AUC obtained using the single CpG site to segregate the two groups (see Materials and Methods). 
D, Dot plot of motif enrichment around DMSs between CRPC-NE and CRPC-Adeno solid tissue biopsy samples. For each motif, the difference in motif 
rank between the set of hypermethylated DMSs and hypomethylated DMSs is computed using the P value as the ranking variable. The y-axis reports the 
most significant P value obtained between the two sets of regions. Blue indicates preferentially hypomethylated motifs (likely activated); red indicates 
preferentially hypermethylated (likely suppressed); white indicates motifs enriched in DMSs but with no preferential directionality. E, Cumulative density 
plot of differential methylation signal in Hyper and Hypo DMSs reported in C. The labels indicate the fraction of differentially methylated CpG sites with 
an absolute difference in β (Δβ) greater than 0.5, 0.4, and 0.3 between CRPC-NE and CRPC-Adeno samples.

A

D E

B C
ADT

HSPCa CRPC-Adeno

CRPC-Adeno

AR low PC

AMPC

Stem cell-like

CRPC-NE

PCa � 

Norm
al

PCa �Normal

Hypo

Hyper

Neutral

Hypo

Hyper

Neutral

Hypo

Hypo

1.00

0.75

0.50

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 d

iff
er

en
tia

lly
 

m
et

hy
la

te
d 

C
pG

s

0.25

0.00

Hyper

Hyper

Neutral

DiffMeth�Rank
1.0

PTF1A

ELK4

ELK1

ETV4

ETV1

FII1

ELF1

GATA2

GATA6

GRHL2

HOXB13 TEAD1

GATA4

REST–NRSF TEAD2 PGR

ELF3TEAD3ARE

EKLF SPIB GATA3

RARA CDX4

TR4

BCL11A

GATA1GATA3

HEB

ASCL1

E2A

SLUG

ZEB1 E2A

ATOH1NEUROD1

TCF4 NEUROG2

OLIG2
EBF2

ZEB2
TCF12

MYOG EBF

NKX2.1

0.5
0.0
–0.5

53%

39.8%

24.2%

13.8%

3.1%
7.5%

0.75 0.50

����

0.25 0.00

150

100

M
ot

if 
en

ric
hm

en
t l

og
10

 (
P

–v
al

)

50

0

–0.5 0.0
�Rank (DNA methylation)

0.5 1.0

7.1%

10.1%

82.8%

1.8%

1.3%

96.9%

4%

3.7%

92.3%

Number of CpG sites

0

5,
00

,0
00

10
,0

0,
00

0

15
,0

0,
00

0

20
,0

0,
00

0

CRPC–Adeno �

PCa

CRPC–Adeno �PCa

CRPC–NE �

CRPC–Adeno
Genetic
Epigenetic

AR signaling
Differentiation
EMT
Reactivation of
developmental
programs

C
om

pa
ris

on

D
riv

er
s 

of
re

si
st

an
ce

B
io

lo
gi

ca
l

pa
th

w
ay

s

Mixed states\
transition

ARSi+other therapies Chemotherapy

Double-
negative

Up to 20% of CRPC
treated with ARSi

Hyper

2.9% 15.1%

2.7%

12.2%

0.4%

2.9%

Hypo

DMR class

CRPC–NE �CRPC–Adeno

CRPC-NE �CRPC-Adeno differential methylation

PU

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-23-0754/3403116/cd-23-0754.pdf by U

niversity C
ollege of London user on 22 January 2024



Franceschini et al.RESEARCH ARTICLE

OF5 | CANCER DISCOVERY MARCH  2024	 AACRJournals.org

is dedicated to tumor content estimation from cfDNA, pro-
viding an estimation of the disease burden and an essential 
covariate for CRPC-NE detection. As DNA methylation is 
highly tissue- and disease-specific, we sought to prioritize 
a small set of DMRs that can distinguish between prostate 
cancer cells, regardless of their phenotype, and WBCs. Mul-
tiple studies established that the major contribution to the 
healthy cfDNA pool could be traced to WBC (14, 15). Spe-
cifically, a small set of predefined CpG clusters was tested for 
differential methylation in tissue biopsies from high tumor 

content CRPC samples (3, 10) versus isolated WBC. After this 
procedure, 53 DMRs were selected for tumor content estima-
tion. A similar approach was applied to the NE detection 
module for the selection of DMRs that segregate CRPC-NE 
and CRPC-Adeno samples, utilizing a set of CpG clusters 
(n = 80) and a refined selection of previously described DMRs 
and DMSs (ref. 12; n = 919). Examples of informative regions 
are reported for the tumor content estimation module and 
NE detection module (Fig. 2B). Furthermore, a collection of 
knowledge-informed regions, including DMSs near known 

Figure 2. Design of an efficient custom sequencing panel to monitor CRPC tumor burden and detect the emergence of CRPC-NE. A, Schematic of 
NEMO panel design. DNA methylation profiles of solid tissue biopsies from patients with CRPC were collected from two independent studies. Tumor 
biopsies were classified as CRPC-Adeno and CRPC-NE based on tumor morphology. White blood cells (WBC) and healthy cfDNA profiles were collected 
from two additional studies and are considered the expected nontumor contribution in cfDNA. A series of differential methylation analyses produced 
informative DMRs that were prioritized following specific criteria (see Methods section). In addition, a series of knowledge-informed regions were 
included. The final NEMO sequencing panel design spans ∼150 Kb and covers roughly 8,000 CpG sites. B, Example of informative DMRs. For each sample 
category, a subset of three representative solid tissue biopsy samples, in vitro models, or primary cell lines (white blood cells) are shown (cyan: PBMC, 
sepia: CRPC-Adeno, mauve: CRPC-NE). Blue top tracks indicate the captured regions. Left column, two examples of DMRs used for tumor content estima-
tion, exhibiting opposite DNA methylation values in mCRPC (independent of morphology) and WBC samples. Right column, two examples of DMRs used 
for CRPC-NE detection, exhibiting opposite DNA methylation in CRPC-Adeno and CRPC-NE samples. C, Revigo semantic representation of gene ontology 
from genes associated with NEMO informative DMRs. The dot size is proportional to the significance of the collapsed terms. The left GO analysis was 
obtained from the tumor content estimation DMRs. The right GO analysis refers to the modules containing DMRs between CRPC-NE and CRPC-Adeno 
samples. Knowledge-driven regions have been excluded to avoid enrichment artifacts. D, Multidimensional scaling plot based on a WGBS atlas of normal 
cell types masked to retain only the regions included in the NEMO panel. Representative cell types of interest are highlighted, prioritizing the most simi-
lar healthy counterpart to the phenotypes of interest: WBCs (expected background, cfDNA), prostate epithelial (CRPC-Adeno), and pancreatic endocrine 
and neural lineage cells (CRPC-NE).
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NE drivers and genes regulated by DNA methylation, were 
included (n = 842, see Methods section). The genes associated 
with the data-driven modules included in the NEMO design 
were enriched for terms related to the development of the 
epithelium (Fig.  2C, left) and neural-related terms (Fig.  2C, 
right). Unsupervised analysis of a collection of purified 
benign cells (15) highlighted the major sources of variability 
captured by the selected CpG sites, showing a clear separa-
tion between hematopoietic, epithelial, and neural/endocrine 
cell types (Fig.  2D). The total size of the knowledge-based 
and data-driven sequencing panel covered approximately 150 
Kbp, including approximately 8,000 CpG sites within the 
target regions. The small size of the panel allows for high 
throughput and excellent scalability, even at high sequenc-
ing depths. Throughout the following sections, we exten-
sively tested the NEMO design on newly generated data and 
published whole-genome sequencing data using a masking 
procedure that retains only the CpGs in our custom design. 
The masked signal obtained from whole-genome techniques 
is highly concordant with the one obtained with NEMO (Sup-
plementary Fig. S2C).

DNA Methylation–based Inference of CRPC Tumor 
Fraction in cfDNA

Highly specific DNA methylation marks allow for precise 
estimation of tissue of origin using cfDNA methylation (14, 
15). In the context of cancer, the contribution of prostate epi-
thelial tissue signal to the cfDNA pool can be interpreted as 
a proxy of the disease burden (29), assuming that there is no 
other source of extensive tissue damage. Both the qualitative 
and quantitative assessment of tumor-derived cfDNA (also 
known as circulating tumor DNA, ctDNA) in circulation is 
important for disease monitoring. To this end, we utilized the 
β value of 53 DMRs as a proxy of the ctDNA fraction in circu-
lation (i.e., tumor content). In brief, those 53 regions present 
opposite DNA methylation levels in isolated WBC compared 
with CRPC samples, resulting in a linear correlation between 
the β value of each region and the tumor content (Fig.  3A; 
Methods). A bootstrap approach using half of the regions is 
used to estimate a confidence interval that informs on the sta-
bility of the tumor content estimation. Testing this approach 
on masked data from CRPC metastatic tumor tissue biopsies 
and cfDNA profiles from patients with CRPC revealed a strong 
correlation with orthogonal tumor estimation (R =  0.92 and 
R  =  0.79, Pearson correlation; Supplementary Fig.  S3A and 
S3B). We applied the tumor content estimation procedure 
to a collection of preclinical models (n =  24), three pools of 
peripheral blood mononuclear cells (PBMC), and three healthy 
donor cfDNA plasma samples (HD) and obtained the expected 
results in most cases (Fig.  3B) with mild discrepancies likely 
driven by a divergence between the in vitro model and the DNA 
methylation of the original tissue biopsy. We next sought to 
test the accuracy of tumor content estimation through in vitro 
dilutions. Genomic DNA from the prostate cancer cell line 
LNCaP and a pool of peripheral blood mononuclear cells 
(PBMC) were mixed with a decreasing contribution of cancer 
DNA. The estimated tumor content was highly consistent 
with the ground truth (R = 1, P < 2e–16, Pearson correlation), 
distinguishing cancer-derived DNA from PBMCs down to ∼2% 
of expected cancer DNA fraction (Fig.  3C; Supplementary 

Fig. S3C). Similar concordance was observed for dilutions of a 
single cfDNA sample with known tumor content with cfDNA 
from healthy donors. Consistently, mixtures of LNCaP cells 
and the PM155 patient-derived organoid model resulted in 
a tumor content of 100%. A set of 20 cfDNA samples from 
patients with CRPC enrolled in the PRIME observational trial 
cohort was subjected to sequencing with both NEMO and 
the PCF-SELECT targeted genomic assay (30), a sequencing 
panel optimized for tumor content estimation and detection 
of allele-specific genomic events. The tumor content inferred 
by NEMO was consistent with genomic assessment (Fig. 3D, 
R  =  0.99 Pearson correlation) in the range of tumor con-
tent above 15%, in which the genomic-based methodologies 
return reliable estimations. We further explored samples with 
methylation-based estimates below 15% by adapting a read-
based tumor content strategy by Li and colleagues (ref. 16; see 
Methods). We observed total coherence between NEMO-based 
tumor detection and the read-based support of tumor signal, 
highlighting the bona fide detection sensitivity of tumor down 
to 3% (Fig. 3E; Supplementary Fig. S3D). These results and fur-
ther evaluation of healthy cell types (Supplementary Fig. S3E) 
support the robustness of tumor content estimation with a 
minimal set of regions and suggest that even in a parsimonious 
regimen, the obtained sensitivity is comparable or higher than 
that from tailored genomic-based techniques.

Scoring of CRPC-NE Phenotype from 
cfDNA Methylation

The central scope of the NEMO panel is for detecting CRPC-
NE using plasma cfDNA. We leveraged patient solid tissue 
biopsies as a reference, selecting the samples with the high-
est tumor content (TC > 80%; pathologically defined CRPC-
NE  =  10, CRPC-Adeno  =  29) to build representative DNA 
methylation profiles for the two CRPC phenotypes of interest. 
Two additional references of background signal were obtained 
using isolated WBC, selecting the most significant contribu-
tors to the healthy cfDNA pool (monocytes, neutrophils, and 
megakaryocytes), and a collection of healthy cfDNA samples 
(31). To obtain the phenotype evidence (PE) score (Fig. 4A), we 
first estimated the contribution of CRPC-NE and CRPC-Adeno 
signal as the relative fraction of tumor content that maximizes 
the likelihood of the observed signal while assuming that the 
remaining non-tumoral contribution can be modeled as healthy 
cfDNA. In this step, we enforced consistency with the previously 
estimated tumor content, requiring that the sum of the inferred 
CRPC-Adeno and CRPC-NE components equal the value of 
tumor content. Once the relative contribution of CRPC-NE is 
estimated, the value is normalized by the total tumor content, 
making it independent from the tumor content and within 
the [0–1] range, where zero means total absence of evidence of 
CRPC-NE, and one means maximal evidence. As expected, the 
intrinsic uncertainty of tumor content estimation makes the 
PE score unstable in samples with less than 3% tumor content; 
thus, we do not provide an estimation in such cases. The PE 
score measured in tissue samples presented clear segregation, 
with modest heterogeneity in CRPC-Adeno cases (Supplemen-
tary Fig. S4A and S4B). The PE score of primary sorted healthy 
cells of a variety of tissues of origin demonstrate values far from 
the extreme representative of Adeno and NE (Supplementary 
Fig. S4C). Of note, although designed for prostate cancer, the 
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NEMO approach might also identify other small-cell carcino-
mas such as SCLC (Supplementary Fig. S4D and S4E).

We applied our inference framework to a set of prostate can-
cer cell lines, patient-derived organoids, and PDX models, lever-
aging preclinical models profiled both with NEMO and masked 
genome-wide data. As expected, we observed that CRPC-NE 
organoids had high phenotype scores (Fig. 4B), with scores of 
adenocarcinoma models, on average, higher than metastatic 

tumors from patient biopsies. This is in line with a recent study 
reporting increased plasticity in in vitro models compared to 
biopsies from the same subtype (32). Unexpectedly, the CRPC-
NE organoid line PM155 had a relatively low PE score (∼0.55). 
However, masked methylation data for the original patient 
biopsy of PM155 obtained a higher score, suggesting a possible 
partial divergence of that model with respect to the original 
sample. This observation was confirmed by integrating four 

Figure 3. Inference of CRPC tumor content in circulation with a minimal set of informative regions. A, Schematic of the tumor content inference 
strategy. A set of informative regions with opposite and extreme DNA methylation values in WBCs and CRPC was used to estimate the tumor content 
in cfDNA samples, assuming that the nontumoral fraction of cfDNA is similar to the cfDNA methylation observed in healthy individuals. An iterative 
subsampling with only half of the informative regions produces a stability interval for the estimation. B, Tumor content estimation on a set of preclinical 
models, including cell lines, organoids, PDXs, and samples representative of the healthy cfDNA background (PBMC, healthy donors). C, Tumor content 
estimation on a set of serial dilutions based on preclinical models, pure cell lines, and cfDNA. PBMCs and plasma cell-free DNA from healthy donors 
(HD) are expected to be negative for tumor content. D, Tumor content estimation of CRPC ctDNA samples from a set of patients from the PRIME cohort. 
Genomic-based tumor content estimation was obtained by applying the PCF-SELECT panel to matched ctDNA samples collected at the same time point. 
E, Zoomed-in view of the low tumor content samples with discordant tumor content estimation between NEMO (based on DNA methylation) and PCF-
SELECT (based on copy-number alterations and SNP allelic fraction). The statistical significance of an orthogonal per-read analysis based on alpha values 
of informative regions (see Methods) is reported near the sample.
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proposed CRPC groups defined by gene expression and chro-
matin accessibility (25). Intriguingly, the PE score meaningfully 
aligned to the spectrum of AR independence, capturing poten-
tial intermediate phenotypes such as the recently described 
stem-cell-like (SCL) and WNT-driven subtypes (25) (Fig.  4C), 
which were not included in the training data. Serial dilution of 
CRPC-NE patient-derived organoids (PM154, PM155) with the 
adenocarcinoma cell line LNCaP presented a linear decrease in 
PE score, as expected (Fig. 4D). Importantly, the PE score had 
the desirable properties of being negative in cell-free DNA from 
healthy individuals and stable across a wide range of tumor 
contents (Supplementary Fig. S4F).

We applied the PE score to a collection of cfDNA data, includ-
ing unpublished WGBS cfDNA data from patients with patho-
logically confirmed CRPC-Adeno and CRPC-NE (masked) and 
cfDNA from two independent CRPC cohorts without biopsies 
(Wu and colleagues (19) and the PRIME cohort Supplemen-
tary Table S2A and S2B). The PE score successfully segregated 
pathology-confirmed CRPC-Adeno and CRPC-NE samples, 
with few exceptions (79/82 and 17/20 correctly classified sam-
ples for CRPC-Adeno and CRPC-NE, respectively, using the 
0.43 cutoff calculated on tissue biopsies; Fig. 4E). All patients 
in the unselected CRPC cohorts with no clinical evidence of NE 
differentiation had low PE scores despite a range of estimated 

tumor contents similar to the CRPC-NE. After inspection of 
the corresponding patient features, we noticed that one patient 
with CRPC-Adeno who had a high PE score (PM341) had 
markedly elevated serum levels of the neuroendocrine marker 
chromogranin A of 1,221 ng/mL (upper limit of normal 140 
ng/mL), suggesting a possible clinically undetected CRPC-NE 
component or transition state. Conversely, one patient with 
CRPC-NE with a low PE score below 10% was confirmed to 
have mixed histology (PM243), with metastatic tumor harbor-
ing both adenocarcinoma and neuroendocrine features. The 
uneven contribution of the two phenotypes to the cfDNA pool 
may account for the observed low score. The few remaining 
misclassified samples were characterized by low tumor content, 
possibly hampering the accuracy of our classification. Overall, 
our extensive analyses of multiple novel and published samples 
support the ability of NEMO to detect the CRPC-NE pheno-
type through targeted cfDNA methylation (Supplementary 
Tables S3 and S4).

Probing the CRPC Transcriptional Spectrum 
with NEMO

To further test the ability of NEMO to detect the spectrum 
of CRPC phenotypic subtypes, we evaluated genomic DNA 
methylation from a collection of 11 PDX models representing 

Figure 4. A tumor content-aware phenotype evidence score detects CRPC-NE in circulation. A, Schematic of phenotype evidence (PE) score estima-
tion in ctDNA samples. Three reference distributions were created using a panel of high tumor-content solid tissue biopsies and PBMC/cfDNA from 
healthy donors. As the tumor content is known from the previous step, the expected contribution of CRPC-NE and CRPC-Adeno to the observed DNA 
methylation can be estimated using a Bayesian regression with a strong prior on the non-tumoral component (see Methods). This procedure is equivalent 
to estimating the position of each sample in a subspace on a two-dimensional simplex, representing a three-component deconvolution bound to a known 
tumor content. The estimation can be normalized by factoring the tumor content to obtain the relative contribution of the CRPC-NE signal over the total 
tumor signal, which we refer to as the Phenotype Evidence score (PE score). B, The PE score estimation in a collection of preclinical models of CRPC. The 
shape of each dot indicates whether the data has been generated with NEMO (circle) or by masking whole genome data (triangle). Statistical significance 
is assessed with Wilcoxon test. (continued on next page)
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various CRPC subtypes (23), including not only CRPC-NE 
and CRPC-Adeno, but also double-negative prostate cancer 
(DNPC2) lacking both AR and NE marker expression, amphic-
rine prostate cancer (AMPC) expressing both AR and NE 
markers, and intermediate phenotypes (ARlow, NElow). These 

subtypes were previously defined on the basis of transcrip-
tomic analysis (ref.  23; Fig.  5A). The highest PE score was 
observed in CRPC-NE and DNPC, with ARlow and CRPC-
Adeno PDXs harboring intermediate scores (Fig. 5B). Intrigu-
ingly, the AMPC PDX (ARpos/NEpos) obtained a score similar 
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to CRPC-Adeno, suggesting that the PE score might capture 
features of AR independence regardless of expression of clas-
sical neuroendocrine markers (SYP, CHGA). As expected, the 
methylation-based PE score correlated positively with a previ-
ously described gene expression–based NEPC score (3) and 
negatively with AR signaling score (ref.  33; Supplementary 

Fig. S5A). We further leveraged matched transcriptomic data 
to measure the correlation between PE score and transcrip-
tional programs. GSEA analysis based on single gene correla-
tion statistics showed a clear positive enrichment for terms 
related to proliferation, Myc targets, and TGFβ signaling 
(Fig. 5C). Conversely, a negative correlation was observed for 
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terms related to androgen response and TP53 pathway. Similar 
results were obtained with a regulon-based analysis (34), high-
lighting a negative correlation between the PE score and the 
activity of FOXA1 and AR (Supplementary Fig. S5B).

As a module of the NEMO panel was designed to capture 
promoters and DMSs near genes of interest, we tested their 
ability to inform on the underlying transcriptional state. We 
first queried the DNA methylation profiles by EPIC array of a 
collection of PDX samples (n  =  18) and their corresponding 
gene expression profiles to pinpoint gene regions with the most 
robust correlations and independently validated them in high 
tumor content solid tissue biopsies from the West Coast Stand 
Up To Cancer-Prostate Cancer Foundation Dream Team cohort 

(WCDT; n  =  100; Fig.  5D and E; Supplementary Table  S5). 
Regions with reproducible correlation include canonical mark-
ers of CRPC-NE (INSM1), CRPC-Adeno (KLK3), and genes rel-
evant to CRPC biology, such as FASN and EZH2. For example, 
when focusing on EZH2, a gene involved in prostate cancer 
plasticity and associated with aggressive disease (5, 35), there 
was a direct correlation between DNA methylation of the EZH2 
intronic region with increased EZH2 transcript levels, suggest-
ing a possible regulatory element. High EZH2 mRNA expres-
sion or EZH2 methylation was associated with shorter patient 
survival in the WCDT cohort (Fig.  5F and G; log-rank test P 
values of 0.072 and 0.036, respectively). A similar trend was 
observed across CRPC subtypes while querying for the cfDNA 
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Figure 5. (Continued) E, Visualization of the correlation between DNA methylation and gene expression in PDX samples and WCDT cohorts for INSM1, 
FASN, KLK3, and EZH2. The blue line and shaded regions represent the linear model fit and 95% CI, respectively. F, Kaplan–Meier overall survival analysis 
based on quantiles of EZH2 expression in the WCDT CRPC cohort. Samples with tumor content below 50% were excluded. Dashed lines indicate the 
median OS for each group. G, Kaplan–Meier overall survival analysis using the DNA methylation quantiles of the EZH2 associated as a proxy of EZH2 
expression. The same samples of F are used.
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methylation signal of the informative regions (Supplementary 
Fig. S5C) and correcting DNA methylation for tumor content. 
In summary, the PE score can capture meaningful transcrip-
tional states and provides a model-informed analysis of specific 
DMRs that could be used to noninvasively obtain a relative esti-
mation of gene expression for specific genes of interest.

Clinical Utility of Methylation cfDNA Profiling in 
Aggressive CRPC

To assess the clinical utility of NEMO, we profiled plasma 
DNA from patients with clinically defined aggressive vari-
ant prostate cancer (AgAdeno) and/or pathologically defined 
CRPC-NE enrolled in two prospective phase II clinical trials 
(Supplementary Table  S6A and S6B). One trial tested the 
efficacy of the AURKA inhibitor alisertib (20), and the other 
tested the efficacy of carboplatin plus docetaxel chemother-
apy (21). Trial eligibility criteria are listed in Supplementary 
Table S7. In the alisertib trial, all patients (n = 61) underwent 
baseline tumor metastatic biopsy to confirm histology as well 
as matched peripheral blood sampling. We profiled 60 cfDNA 
baseline plasma samples from the alisertib trial, of which 29 
were from patients classified as CRPC-NE and 31 were AgAd-
eno with adenocarcinoma histology, with subtypes confirmed 
by central pathology review. The cfDNA tumor content esti-
mations spanned the entire range, in line with the very aggres-
sive features of the patients included, with no significant 
difference between AgAdeno and CRPC-NE cases (Fig.  6A, 
P  =  0.87). We observed that the tumor content in circula-
tion was prognostic, with patients with tumor content ≥10% 
having inferior overall survival (OS) and progression-free 
survival (PFS) compared with those with tumor content <10% 
(P =  0.03, Fig.  6B; Supplementary Fig.  S6A). The PE scores 
resulted in a unimodal distribution for CRPC-NE cases, with 
few outliers with moderate and low scores (Fig. 6C). On the 

other hand, AgAdeno samples showed a bimodal distribution, 
suggesting heterogeneous disease states and possibly several 
cases with undiagnosed CRPC-NE and/or epigenetic simi-
larities with CRPC-NE. We tested whether those PE scores 
were associated with specific trial inclusion criteria within 
the AgAdeno group (Supplementary Fig. S6B). Interestingly, 
when we rereviewed these cases with high PE score and 
adenocarcinoma histology by central review, we found that 
9 of 10 had CRPC-NE reported by local pathology based on 
morphology (n = 8) or IHC staining for NE markers (n = 1). 
These data speak to differences across pathologists and point 
to potential value for a more objective PE score beyond 
pathology classification.

In the phase II trial of carboplatin plus docetaxel, we 
evaluated 41 baseline plasma samples by NEMO. Tumor 
content was measurable in all 41 samples, with CRPC-NE 
(i.e., pathologically confirmed small-cell prostate cancer) 
and aggressive variant prostate cancer (AVPC; defined clini-
cally, Supplementary Table  S7) showing comparable values 
(Fig. 6D, P = 0.12). Of note, not all patients with AVPC had 
a metastatic biopsy prior to enrolling on the trial to confirm 
NE or adenocarcinoma histology. Consistently, cfDNA tumor 
content was strongly associated with overall survival from the 
start of chemotherapy (Fig. 6E, P-value < 0.001). The PE score 
successfully captured 6 of 8 patients with CRPC-NE, whereas 
6 of 24 AVPC presented with high scores potentially compat-
ible with undiagnosed CRPC-NE and/or epigenetic similarities 
with CRPC-NE (Fig.  6F). When looking at the clinical inclu-
sion criteria for the study, high PE score positively associated 
with the presence of bulky lymphadenopathy or pelvic mass 
(Supplementary Fig. S6C). We next assessed the association of 
cfDNA tumor content, PE score, and the additional inclusion 
criteria used in both trials with clinical outcomes, and tumor 
content was independently associated with overall survival after 

Figure 6. The application of NEMO in two phase II clinical trials reveals the prognostic value of cfDNA tumor content and detects potentially undi-
agnosed CRPC-NE. A, Boxplot of tumor content estimation from ctDNA samples in the phase II trial of the aurora kinase A inhibitor alistertib. Patients 
had either aggressive clinical features with adenocarcinoma histology (AgAdeno) or CRPC-NE, defined based on tumor morphology on central review 
of pretreatment biopsy. Eligibility criteria are listed in Supplementary Table S6. B, Kaplan–Meier analysis of overall survival based on estimated ctDNA 
tumor content in the circulation at the beginning of treatment in patients enrolled on the alisertib trial. C, Violin plot of PE score estimation of cfDNA 
from patients with AgAdeno and CRPC-NE (samples with tumor content <3% are excluded). (continued on next page)
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controlling for additional variables (Supplementary Fig. S6D).  
There was no significant association between PE score and 
response to treatment in either of these two phase trials, 
which was not unexpected as the alisertib trial was negative 
for its primary endpoint and the carboplatin-docetaxel trial 
was not specifically geared towards targeting CRPC-NE.

Finally, we measured the binary classification performance 
of the PE score across all available CRPC-Adeno and CRPC-NE 
plasma samples resulting in an AUC of 0.93 (CI:0.88–0.99, Sen-
sitivity: 0.85, Specificity: 0.95, nAdeno = 83, nNE = 53; samples 
with tumor content  >3%) for histology-confirmed CRPC-NE 
and a Youden index optimal cutoff of 0.43, consistent with the 
PE scores observed in the preclinical models. The classification 

performance raised to 0.97 (CI, 0.93–1) in high tumor content 
(>50%) plasma samples (Fig. 6G). The binary classification perfor-
mance remained robust after a classification module downsam-
pling test to as low as 5% of informative regions corresponding 
to about 1,500 CpGs and 25 Kbp of genomic space (Fig.  6H; 
Supplementary Fig. S6E), supporting a highly scalable design.

DISCUSSION
Most precision oncology efforts in CRPC have focused 

on genomic subtyping to select patients for PARP inhibi-
tors, immunotherapy, or other biomarker-driven therapies 
(36). Beyond genomics, CRPC is also characterized by diverse 

Figure 6. (Continued) D, Boxplot of tumor content estimation from ctDNA samples in the docetaxel plus carboplatin chemotherapy trial. Patients had 
clinically defined aggressive variant prostate cancer (AVPC) or small-cell prostate carcinoma (i.e., CRPC-NE). A pretreatment biopsy to confirm histo
logy was not required. Eligibility criteria are listed in Supplementary Table S6. E, Kaplan–Meier analysis of overall survival based on estimated tumor 
content in circulation at the beginning of treatment for the chemotherapy cohort. F, PE score estimation of cfDNA from patients with AVPC and small-cell 
prostate cancer (SCPC; samples with tumor content <3% are excluded). G, Global AUC of binary classification (CRPC-NE, CRPC-Adeno) based on ctDNA 
samples with biopsy-confirmed pathology and excluding AVPC and AgAdeno samples. Different shades represent the minimum tumor content required 
before measuring the PE score segregation performance. H, Global AUC of binary classification based on ctDNA samples as in G. Different shades repre-
sent the downsampling of informative regions used for PE score calculation with respect to the total ensemble of informative regions. The more lenient 
threshold of 3% tumor content has been used for this analysis.
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phenotypic subtypes that drive response and resistance to sys-
temic therapies. One emerging phenotypic subtype is CRPC-
NE, reported in up to 15% to 20% of patients with late-stage 
CRPC (2, 33). The diagnosis of CRPC-NE currently relies on 
metastatic tumor biopsy that is invasive and not often clear 
based on tumor heterogeneity and variability in histopathol-
ogy interpretation. Although CRPC-NE is enriched for RB1 
and TP53 tumor suppressor losses, these alterations are not 
specific to CRPC-NE and can also occur in CRPC-Adeno (3). 
Specific molecular biomarkers for improved identification of 
CRPC-NE could lead to early detection and early intervention 
strategies to improve patient outcomes.

In this work, we demonstrate an efficient and noninvasive 
method for the estimation of disease burden (tumor content) 
combined with the detection of CRPC-NE (PE score) ena-
bled by targeted sequencing of cfDNA methylation. Through 
extensive analyses of publicly available datasets and knowl-
edge-driven biomarker selection, we prioritized informative 
regions of the human genome that reflect the CRPC pheno-
typic state. Interrogation of patient-derived whole-genome 
DNA methylation profiles highlighted that only a minority of 
CpGs bear highly informative differential DNA methylation 
sites across prostate cancer disease progression. Grounding 
on those observations, we designed a custom panel to cap-
ture only regions of interest. The reduced size of the panel 
allows for higher coverage sequencing with a lower read 
throughput compared with whole-genome approaches, both 
desirable properties in the setting of cfDNA sequencing. A 
DNA methylation–based approach for tumor content esti-
mation revealed consistency when compared with genomic-
based tumor content inference and ground truth (in vitro 
dilutions), leveraging only a few tens of informative regions. 
Importantly, the precise estimation of tumor content does 
not rely on the presence of clonal copy-number changes or 
single-nucleotide variants (SNV), which are strictly required 
for genomic-based approaches. Although tumor content esti-
mation can be detected by other strategies, those do not offer 
phenotype scoring desired in the CRPC context.

The PE score captures the putative fraction of CRPC-NE over 
the total tumor content detected, segregating cancer-derived 
plasma samples based on their known pathologic diagnosis. 
Although the ability to quantify any tumor-related features 
does depend on the presence of tumor material in the circula-
tion, we intentionally built a PE score that, provided there are 
tumor molecules available (ie, lower limit of detection 3%), is 
analytically independent of the percentage of tumor content. 
The clinical context in which this assay might be most useful is 
in later-stage metastatic prostate cancer when CRPC-NE is most 
often suspected and where ctDNA fraction is typically high 
(>10%–15%). However, the panel sensitivity could also facilitate 
future investigation in earlier disease states to evaluate if CRPC-
NE clones may be detected even before clinical suspicion.

Except for a few cases, the PE score provided excellent segre-
gation between CRPC-Adeno and CRPC-NE samples. Discord-
ance between the pathologic classification from a single biopsy 
and the PE score in ctDNA in some cases is expected and likely 
reflects the ability of liquid biopsies to detect intrapatient 
tumor heterogeneity and distinct metastatic sites that contrib-
ute differently to the ctDNA pool. Analysis of patient-derived 
organoid and xenograft models suggests that the PE score can 

also capture other AR-independent CRPC phenotypes beyond 
CRPC-NE. Querying single informative regions near genes of 
interest also suggested the potential use of DNA methylation 
as a proxy of gene expression, as exemplified by the case of 
EZH2. Although these results warrant further exploration, pos-
sibly aided by multi-omics profiling of plasticity models and 
patients (37), we envision that DNA methylation of selected 
informative sites may provide a glimpse into the transcrip-
tional state of clinically relevant genes.

The application of NEMO to two clinical trial cohorts 
revealed meaningful prognostic value of methylation-based 
cfDNA tumor content and identified the phenotypic spec-
trum within aggressive variant CRPC. There have been very 
few clinical trials dedicated to CRPC-NE. Although the trial 
eligibility was not specific for biopsy-confirmed CRPC-NE, 
these trials represented a unique opportunity to evaluate 
aggressive variant prostate cancer that shares clinical features 
with CRPC-NE. We showed that tumor content is indepen-
dently prognostic in this aggressive disease population, as has 
been seen in other traditional CRPC settings (38). Although 
this disease is very challenging to treat and neither histology 
nor PE score were sufficient to predict response to alisertib 
or docetaxel plus carboplatin chemotherapy, the application 
of NEMO to these trials could inform patient selection for 
future trials testing CRPC-NE–directed therapies.

Other DNA methylation–based approaches for noninva-
sive CRPC-NE detection have recently been described. First, a 
method based on cell-free methylated DNA immunoprecipi-
tation sequencing (39), an immunoprecipitation approach 
that measures DNA methylation, resulted in an excellent 
classification performance (11). However, this approach does 
not provide explicit tumor content estimation or precisely 
measure hypomethylated regions and likely requires a larger 
number of reads. Read-based analyses of whole-genome 
sequencing showed great discriminatory capacity (40) and 
have been successfully applied in this context even using a 
more affordable ultra-low-pass sequencing approach (41). 
Although we obtain comparable performance, there are sev-
eral advantages of a targeted approach. First, we can obtain 
high-resolution information about the DNA methylation 
state and even characterize broad and focal copy number 
alterations (Supplementary Fig.  S7A and S7B) and poten-
tially SNVs for target regions of interest when compatible 
with bisulfite conversion. Our analyses also suggest that a 
smaller design has the potential to decrease further the num-
ber of reads required while retaining performance. As shown 
by our comprehensive initial data survey, most DNA methyla-
tion across the genome is uninformative, indicating that any 
nontargeted genome-wide approach will eventually suffer 
the scarcity of information obtained with a limited num-
ber of reads. On the other hand, all bisulfite-based assays, 
including NEMO, suffer from extensive DNA damage during 
conversion, leading to a partial loss of the input cfDNA. Alto-
gether, we regard the mentioned approaches as complemen-
tary to custom-targeted sequencing, each with its strengths 
and weaknesses. Future work integrating DNA methylation 
with other emerging cfDNA epigenetic platforms such as 
5-hydroxycytosine (42) and H3K27Ac (37) and/or fragmen-
tomics (43) could provide complementary insights into the 
changes in functional state that associate with CRPC-NE.
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In a real-world setting, there are potential scenarios in which 
NEMO application may be useful. CRPC-NE might be suspected 
after considering whether the patient is early or late-stage CRPC, 
types of prior therapy (e.g., prior AR pathway inhibition), and if 
there are aggressive clinical features (e.g., rapid progression with 
low or nonrising PSA, new visceral metastases). In this context, 
the metastatic disease burden is typically high, as reflected by 
tumor content estimation, and the PE score obtained by NEMO 
expresses the degree of AR independence from cancer cells con-
tributing to the ctDNA pool. We suspect that most CRPC-Adeno 
will have low PE score, as we observed in the two CRPC cohorts. 
An extreme score (PE score  <0.3, PE score  >0.7) suggests the 
dominant presence of either adenocarcinoma or NE phenotype. 
Conversely, an intermediate score should be handled with cau-
tion, considering the possibility that the two phenotypes are 
coexisting or the trans-differentiation process is ongoing.

The current diagnosis of CRPC-NE is based on tumor biopsy. 
There are no clear clinical guidelines on when to perform a 
biopsy, and not all patients with aggressive clinical features will 
have CRPC-NE. One potential clinical application of the NEMO 
platform would be for an elevated PE score detected in cfDNA 
to help prompt when to perform a new biopsy for pathological 
confirmation of CRPC-NE and subsequent treatment selection 
for CRPC-NE–directed therapy. We could also envision the 
use of cfDNA as a replacement for a biopsy in the future. As 
the PE score can also detect aggressive variants beyond CRPC-
NE, further studies demonstrating its clinical utility for this 
population are warranted to validate its use as a biomarker to 
guide treatment selection. Serial monitoring studies are also 
needed to understand better how and when CRPC-NE emerges 
dynamically in patients developing lineage plasticity and how 
this might improve clinical decision-making and patient out-
comes. Understanding how DNA methylation changes chart 
with dynamics of chromatin accessibility and histone marks 
during the transition from CRPC-Adeno to CRPC-NE would 
also provide biological insights into the potential coopera-
tion of epigenetic events during the lineage plasticity process. 
Other potential applications of NEMO could be for predict-
ing response to existing CRPC therapies (e.g., AR and PSMA-
targeted therapies, chemotherapy, others), selecting patients 
for trials targeting CRPC-NE (e.g., DLL3-targeted therapies), or 
approaches geared toward targeting or modulating the lineage 
plasticity process (e.g., epigenetic strategies).

METHODS
Genome-wide Datasets for NEMO Design and Testing

We leveraged a collection of DNA methylation profiles from pub-
lished studies to design NEMO. All files were obtained from DNA 
methylation counts, reporting CpG position, coverage, and the frac-
tion of methylated reads (i.e., β). Each dataset was initially available in 
hg19 or lifted from hg38 to hg19 using the rtracklayer liftover function 
using a chain file from UCSC (https://hgdownload.cse.ucsc.edu/gold-
enpath/hg38/liftOver/hg38ToHg19.over.chain.gz). As part of the data 
harmonization process, all DNA methylation information was col-
lapsed to the forward strand. CpG positions with coverage lower than 
10 were discarded before the analysis to restrict the number of points 
to high-quality measurements. After the nomination of informative 
regions included in the NEMO panel, whole-genome DNA meth-
ylation data is restricted to the masked information within NEMO 
regions. The following datasets were utilized.

Tissue sample datasets:

(i)	� Lin and colleagues 2013 (44). Tissue eRRBS data. Seven nor-
mal prostatic tissues and 7 localized prostate adenocarcinoma.

(ii)	� Beltran and colleagues 2016 (3). Tissue eRRBS data. Patho-
logically confirmed 18 CRPC-Adeno and 10 CRPC-NE biop-
sies. CRPC-NE was defined based on tumor morphology (22) 
and was not reliant on IHC or transcriptome profiling. Tumor 
purity estimation was assessed from matched whole-exome 
sequencing data by CLONETv2 (45).

(iii)	� Zhao and colleagues 2020 (10). Tissue WGBS data. DNA meth-
ylation coverage files were obtained from the authors. Patho-
logically confirmed 95 CRPC-Adeno, 5 treatment-induced 
small-cell neuroendocrine prostate cancer biopsies (CRPC-NE). 
Small-cell carcinoma was defined on the basis of tumor mor-
phology. Tumor purity estimation was obtained from tabular 
data from the companion work (46), using the average applied 
computational methodologies (pathology, DNA, RNA).

(iv)	� BLUEPRINT consortium: Methylation coverage files were 
downloaded from the RnBeads resource (ref.  47; https://
rnbeads.org/). Representative WBC types most abundant in 
healthy cfDNA were retained, including megakaryocytes, mono-
cytes, and granulocytes (n = 10).

(v)	� Loyfer2023 (15), WGBS from FACS sorted healthy cell types.
(vi)	� Whole-genome bisulfite sequencing and EPIC array data from 

LuCaP PDX lines are publicly available on Gene Expression 
Omnibus (GEO), accession numbers GSE227086, GSE227814, 
and GSE227695.

cfDNA datasets:

(i)	� Fox-Fisher 2021 (31), healthy cfDNA WGBS (n  =  23). This 
dataset is a reference for the expected DNA methylation pro-
file of non–cancer-derived cell-free DNA.

(ii)	� Beltran2020 (12): cell-free DNA WGBS data on patient-derived 
plasma samples, processed as described in the original work, 
from patients with pathologically confirmed matched biop-
sies 6 CRPC-NE, 5 CRPC-Adeno (based on patient diagnosis 
at blood draw). CRPC-NE was defined on the basis of tumor 
morphology (22). Tumor purity estimation was obtained 
from matched genomic samples applying CLONETv2.

(iii)	� ctDNA WGBS cohort (this work): processed as described 
in Beltran and colleagues 2020 (12), from pathologically 
confirmed 6 CRPC-NE, 9 CRPC-Adeno (based on patient 
diagnosis at blood draw). CRPC-NE was defined on the basis 
of tumor morphology (22). Tumor content estimation was 
obtained from matched genomic data applying CLONETv2 
or, if the genomic data was unavailable or of insufficient qual-
ity, using PAMES (48).

(iv)	� Wu2020 cohort (19): cfDNA samples from 19 patients with 
metastatic CRPC, including samples collected prior to start-
ing enzalutamide or abiraterone (n =  19), during treatment 
(n =  3), or at progression (n =  16) were subjected to target 
enrichment NGS for 5.5 million pan-genome CpG sites. All 
patients had rising PSA at the time of plasma collection. We 
obtained DNA methylation counts resulting from alignment 
with bismark (49) to the hg19 genome from the correspond-
ing authors. Only targeted sequencing samples with suitable 
depth were included. For this cohort, a more lenient filter on 
CpG coverage (≥5) was applied during preprocessing to miti-
gate the limited overlap with our design.

A full list of datasets analyzed and produced in this study is 
reported in Supplementary Table S8.

Differential Methylation Analysis across PCa Evolution
Differential methylation analysis focused on regions (DMR) was 

performed using Rockermeth with default parameters, except for 
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na_threshold set to 0.3 to tolerate the missing values commonly 
observed in sequencing data. We set the positive group for each run 
to the most advanced disease state, following the divergent clonal 
evolution hypothesis. FDR of 0.05, and the presence of at least 6 
detected CpG sites inside the region were applied as filters to retain 
significant DMRs. To compute the DMR burden across the genome, 
the sum of the length of all DMRs for each class was divided by the 
haploid genome size. For the comparison with DMSs reported in 
Beltran2016, the table with significant CpGs was obtained from the 
publication and overlapped with DMRs.

Differential Methylation–based Motif Analysis
For the motif analysis on DMSs, the following procedure was 

applied. First, for any given comparison and starting from the Rock-
ermeth (27) intermediate AUC result, CpG sites with an AUC lower 
than 0.2 or higher than 0.8 were considered hypomethylated and 
hypermethylated, respectively. The coordinate of each CpG was 
expanded by 150bp on both sides, and overlapping genomic windows 
were collapsed. This refinement step aims to mimic the common 
size of peaks obtained in experiments like chromatin immunopre-
cipitation sequencing or ATAC-seq, in contrast to the broader size of 
Rockermeth DMRs. HOMER motif enrichment was performed on 
hyper and hypo region sets separately, with the following parameters:

findMotifsGenome.pl {} hg19 -p 2 -size 200 -len 8 -gc -mask

Notice that HOMER applies zero or one occurrence per sequence 
counting. After obtaining the motif enrichment for both sets, each 
motif was ranked based on the enrichment P-value obtained. The 
difference between the rank in hyper and hypo region sets was scored 
for each motif and normalized in the [-1,+1] range. A motif enriched 
only in hypo or hyper regions will have an extreme value (near +1 or 
-1), whereas a motif presenting a similar enrichment in both sets of 
regions will have a difference in rank near 0. Notably, motifs can be 
significantly enriched in both sets.

Comparison with Chromatin Accessibility Data
Two independent experimental datasets were queried to compare 

the differential enrichment of motifs obtained from the previous 
procedure. Both data sources were generated using ATAC-seq. The 
comparison with the CRPC-NE versus normal prostate was carried out 
using supplementary data from the original work (50), which reported 
the motif ranking in transformed prostate cell (PARCB models) lines 
versus the original healthy prostatic cells. Motif ranks obtained from 
DNA methylation analysis were normalized to match the range to the 
one reported in the study. Similarly, ATAC-seq data from organoids 
reported in Tang2022 (25) were downloaded and reprocessed using 
a standardized pipeline (nf-core/atacseq, v1.2, https://nf-co.re/). After 
obtaining a consensus peak set, raw counts were processed using 
DESeq2 (51), and differential accessibility analysis was performed. Dif-
ferentially accessible peaks (FDR < 0.01, |log2FC| > 1) were separately 
fed as input for motif enrichment analysis with HOMER. The rank 
difference in motif enrichment was scored as in the DNA methyla-
tion–based analysis described previously. A set of TFs of interest was 
obtained by annotating the most differentially enriched motifs based 
on literature and adding known determinants of CRPC-NE biology.

Panel Design
The NEMO panel is designed to concomitantly assess multiple 

tumor features in the circulation of prostate cancer patients, from 
the tumor fraction (i.e., tumor content estimation, TC set), to its 
molecular characterization, specifically concerning the adenocarci-
noma versus the neuroendocrine components (NE set). A hybrid 
knowledge-based data-driven approach was implemented for the 
panel design. In total, the panel includes 1,980 informative regions 
across modules (Supplementary Table S9).

Tumor Content Module
The accurate assessment of the circulating tumor fraction is essen-

tial to correctly interpret the DNA methylation value at sites that 
guide the CRPC-NE versus CRPC-Adeno classification, as the WBC-
derived signal could confound the detection of phenotype-specific 
DNA methylation patterns. Previous reports (14, 31, 52) highlighted 
how the healthy component of cfDNA is vastly dominated by hemat-
opoietic-derived signals, including granulocytes, monocytes, lympho-
cytes, and other progenitors. We seek CpG clusters that are extremely 
different in mCRPC (with CRPC-Adeno and CRPC-NE considered 
as a single entity) compared with WBCs. This selection is similar 
to the one operated for tissue deconvolution. We account for only 
two primary signal sources: metastatic prostate cancer and healthy 
cfDNA. In this setting, an ideal CpG site could have a β =  0 in all 
WBC populations and a β =  1 in all mCRPC cases, assuming DNA 
methylation is measured in pure samples. The opposite signal would 
be equally informative.

Briefly, the selection of the NEMO panel TC set sites is as follows:

(i)	� Start from a set of CpG clusters reported in CancerLocator (53).
(ii)	� Collect correspondent DNA methylation levels from mCRPC 

solid tissue biopsies and WBC using the published dataset, 
including Beltran2016, Zhao2020, and BLUEPRINT.

(iii)	� Retain cancer samples with tumor purity greater than 0.75. 
Retain regions with at least 3 CpGs with coverage of 10X or 
greater and minimal variance of β in WBC profiles [sd(β) < 0.1].

(iv)	� Find the top hypermethylated and hypomethylated regions 
comparing mCRPC with WBC. The platform (WGBS, eRRBS) 
is modeled as a covariate in the differential analysis, per-
formed using limma GLM and empirical Bayes procedure on 
M-values transformed methylation values (54).

(v)	� Using an iterative procedure, exclude CpG clusters within 1 Mb 
from a cluster that has already been included in the set, thus 
ensuring the spread of the signal across independent regions.

Previous works based on tissue-based analyses of tumor versus 
normal cells demonstrated that even a dozen robust and independent 
CpGs or CpG islands (CGI) are sufficient to inform tumor content 
(48, 55). We opted to limit this set to tens of CpG clusters, reasoning 
that a small group of regions would likely recover good signals and 
allow for robust estimation. To check the consistency of differential 
methylation, two independent sets of high-purity TCGA-PRAD sam-
ples (TC > 75%) and WBC samples were used (both based on HM450 
array, TCGA consortium, and Hannum dataset (56)). We use this 
independent test to filter out a few regions that perform poorly in 
primary prostate cancer and retain the rest, resulting in 26 hyper-
methylated and 27 hypomethylated regions with opposite methyla-
tion states in mCRPC and WBC.

Phenotype Evidence Score Module
The set of genomic regions to assess NE evidence in the circulation 

of mCRPC patients was defined by a data-driven approach consider-
ing (i) informative CpG clusters proximal to promoters and (ii) Inter-
genic genomic regions based on differentially methylated regions 
(DMR), which have been previously reported as widely differentially 
methylated, likely due to modifications in regulatory enhancers (26). 
Given the rarity of CRPC-NE DNA methylation profiles, we decided 
to use all the available solid tissue biopsies for those steps, leaving 
further validation to in vitro models, PDXs, and cfDNA samples with 
known disease states.

CpG Clusters
Starting from the same CpG clusters mentioned above, we sought 

to find regions that maximize the differential signal between a col-
lection of CRPC-Adeno and CRPC-NE metastatic tissue biopsies. 
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We used a similar procedure as the one used in the tumor content 
set, retaining all available tissue samples from CRPC-NE and CRPC-
Adeno patients. As CRPC-NE samples have significantly higher cel-
lularity than CRPC-Adeno, we account for different tumor content 
using CellDMC (57). After setting stringent thresholds on P value 
and Δβ, only a few tens of regions were scored as significant. This is 
possibly due to the limited extent of the CpG set used or the fact that 
CpG clusters are constructed by design around promoters associated 
with the CpG island and covered by the HM450 array. At the same 
time, the DNA methylation changes observed in the neuroendocrine 
phenotype seem to fall mostly in intergenic (open sea CpG) regions 
(our data and ref. 26). For this reason, we complement this with an 
additional region set described in the next paragraph.

DMRs
To maximize the search space for informative DMRs and include 

intergenic regions, we turned to our recent genome-wide analysis 
reported in Beltran and colleagues 2020 (12), where CRPC-Adeno and 
CRPC-NE metastatic tissue biopsies were processed using the Rock-
ermeth (27) DMR caller, which finds genomic segments that display 
coherent DNA methylation changes between two groups of samples. 
Each segment’s average DNA methylation value can be measured for 
every sample and later corrected for heterogeneous tumor content in a 
framework similar to the one employed for CpG clusters, accounting 
for diverse tumor content values (assessed by CLONET or by PAMES) 
using CellDMC. As expected, this correction excludes several DMRs 
that display a slight change in β (|Δβ |  <  20), a value close to the 
observed difference in cellularity between the two sample groups. Once 
this set of NE-specific DMRs is nominated, we checked their behavior 
on the independent cohort (10) and observed that DMRs with the 
strongest differential signal are largely coherent. Therefore, to retain 
the best signal, we included only DMRs with |Δβ | > 40. Because this 
set of DMRs is large in terms of bps covered (a single DMR might span 
up to 1 Mb), we only include CpGs with clearly differential signals 
which define single DMRs, avoiding capturing portions of the regions 
devoid of informative CpG sites. This procedure led to 919 regions. 
Finally, the CpG sites used in the integrated NE-classifier described in 
our previous study (3) are also included in the NEMO panel (n = 40).

Additional Regions of Interest
Beyond the differentially methylated sites and regions used for 

NE classification, we added two additional sets of regions of interest. 
These sets encompass differentially methylated CpG sites described in 
Beltran2016, with additional filters for either (i) extreme segregation 
between groups and differential methylation or (ii) annotation with 
a curated list of genes involved in mCRPC biology and NE transdif-
ferentiation. Selected genes include AR, STX1, EZH2, ENO2, NCAM1, 
SYP, FOXA2, CHGA, CHGB, SIAH2, ASCL1, NEUROD1, INSM1, SPDEF, 
ASXL3, DLL3, TMPRSS2, KLK3, SOX2, CDH2, GSTP1, SEZ6, BAALC, 
ELAVL4, GATA2, CAND2, ETV5, and TRIM9. The selection is based 
on NE-related literature, common biomarkers, and genes reported as 
differentially expressed and methylated in a previous study (3). Those 
region sets are small and less suitable for classification purposes but 
might inform the transcriptional state of single genes.

DNA methylation data’s availability is minimal compared with 
gene expression; we also designated a small set of NEMO regions by 
leveraging published transcriptomic data. Briefly, two independent 
datasets with matched DNA methylation and gene expression data 
were used to nominate a subset of genes generally regulated by the 
promoter’s DNA methylation, following the procedure described 
in EPISCORE (58). This analysis selects genes likely regulated by 
DNA methylation in normal tissues and thus expected to have DNA 
methylation changes following sharp deregulations. Next, we query 
this subset of genes for either inclusion in the abovementioned set of 
interest or its deregulation between CRPC-NE and CRPC-Adeno. For 

gene deregulation, we leveraged solid tissue samples (3) and an estab-
lished isogenic model that recapitulates NE trans-differentiation 
(50). We require that a gene is sharply upregulated in at least one of 
the two comparisons and then add the differential CpGs in its pro-
moters to this set. This strategy retrieves a series of genes that have 
already been included in the previous selection steps but also allows 
for the inclusion of additional genes for which the DNA methylation 
data on a limited set of samples is not conclusive.

NEMO Datasets
In Vitro Dilutions and Preclinical Models.  In vitro dilutions were 

performed with genomic DNA (gDNA) or cfDNA to the desired ratio 
after quantification using Qubit dsDNA High Sensitivity Assay (Inv-
itrogen). Dilutions were performed before fragmentation (for gDNA) 
and bisulfite conversion. gDNA from LNCaP cell line was mixed with 
gDNA from healthy donors PBMCs to a final amount of 500 ng as fol-
lows: 250 ng and 250 ng, 125 ng and 375 ng, 50 ng and 450 ng, 25 ng 
and 475 ng, 10 ng and 490 ng, 5 ng and 495 ng, and 0.5 ng and 499.5 ng. 
The same dilutions were performed with gDNA from a patient-derived 
organoid cell line (PM154) and gDNA from LNCaP cell line. cfDNA 
from a healthy donor (purchased by Cambridge Bioscience) was mixed 
to a total amount of, respectively, 25 and 20 ng with cfDNA from a 
prostate cancer patient with high tumor content (PCF-SELECT estima-
tion: 0.86) as follows: 12.5 ng and 12.5 ng and 15 ng and 5 ng. Similarly, 
three purchased plasma samples were used to obtain healthy plasma 
cell-free DNA (HD samples). Cell lines were purchased from the ATCC 
and/or authenticated using the ATCC STR profile as reference. All cell 
lines used had a number of passages below 10, and Mycoplasma tests 
were conducted periodically with InvivoGen PlasmoTest. Flash frozen 
tissues from LuCaP-PDX samples were obtained from collaborators at 
the University of Washington. DNA extracted from CRPC organoids 
were obtained from cultures at WCM and DFCI.

Sample Collection and Inclusion and Ethics
For the PRIME cohort samples, plasma samples were obtained 

from a cohort of consented patients with metastatic CRPC prospec-
tively enrolled at multiple clinical centers under an Ethics protocol 
approved by the Trento Hospital Ethics Committee (APSS Trento 
Ethics Committee approval # Int. 2562), the lead clinical center, and 
subsequently at all satellite sites. Deidentified plasma samples from 
WCM and DFCI were collected after written informed consent from 
patients with metastatic CRPC with or without pathologically con-
firmed NEPC (#WCM IRB 1305013903, #DFCI IRB 19–883). Plasma 
samples from the Alisertib cohort were collected as part of a single-
arm, multi-institutional open-label phase II trial (NCT01799278) 
(20). Plasma samples from the docetaxel plus carboplatin chemo-
therapy trial cohort were collected as part of the phase II clinical trial 
at MD Anderson Cancer Center (NCT00514540; ref.  21). Genomic 
DNA from pools of healthy donor PBMCs (males, age >40 years old 
with no medical history of cancer or anticancer treatments) were col-
lected as part of the PRIME study and used as control and for serial 
dilutions (approved by the University of Trento Ethics Committee, 
UniTrento #2017–010).

Plasma Preparation and cfDNA Extraction
Plasma was separated from whole blood with a standard double 

spin protocol and stored at −80°C. The input plasma volume ranged 
between 1 mL and 2 mL depending on the cohort. For cfDNA 
extraction of samples processed in Trento, plasma was thawed at 
room temperature (RT) and immediately processed with the QIAamp 
Circulating Nucleic Acid Kit (QIAGEN) according to the manufac-
turer’s protocol. The extracted cfDNA was eluted in 30 μL Tris HCl 
10 mmol/L pH 8 and quantified with Qubit dsDNA High Sensitiv-
ity Assay (Invitrogen); the quality was assessed using the Bioana-
lyzer High Sensitivity DNA Kit (Agilent). For samples processed at 
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Weill Cornell Medicine (WCM, DFCI, and Alisertib trial), cfDNA 
was extracted from plasma using the NeoGeneStar Cell-Free DNA 
Purification kit per manufacturer’s instructions. Briefly, for 2 mL 
plasma samples, cfDNA was isolated via proteolytic digestion with 
1 μg of RNA carrier at 55°C for 30 minutes. cfDNA capture on the 
superparamagnetic particles was accomplished via the addition of 
three volumes (6 mL) of LYS buffer, 0.8 mL isopropanol, and 30 μL 
NGSTM Beads. The capture of cfDNA was carried out via 30-minute 
room temperature incubation, 2x wash and 2 × 80% EtOH, air drying, 
and elution in 30 μL 10 mmol/L Tris, 0.1 mmol/L EDTA (pH 8.5).

gDNA Extraction and Fragmentation
For PDX samples, 20–25 5-μm slides of fresh-frozen tissue were cut 

using the HM525 NX cryostat (Thermo Fisher Scientific) and used 
for subsequent gDNA extraction. gDNA from PDX was extracted 
using the DNeasy Blood & Tissue Kit (QIAGEN), and gDNA from 
cell lines was extracted using the NucleoSpin Tissue Kit (Macherey-
Nagel) according to the manufacturer’s instructions and eluted in 
100 μL Tris HCl 10 mmol/L pH 8. The gDNA was quantified using 
the Qubit dsDNA High Sensitivity Assay (Invitrogen). gDNA for 
libraries preparation was fragmented to a target size of 350 bp using 
the Covaris focused ultrasonicator M220.

Bisulfite Conversion, Library Preparation, 
and Capture Sequencing

On the basis of the manufacturer’s instructions, bisulfite conver-
sion was performed on 5–25 ng of cfDNA and 200 ng of fragmented 
gDNA using the EZ DNA Methylation-Lightning Kit (Zymo). gDNA 
was requantified after bisulfite conversion using Qubit ssDNA High 
Sensitivity Assay (Invitrogen) and 100 ng of converted gDNA was used 
as input, whereas the whole converted cfDNA was used for libraries 
preparation for target sequencing with xGen Methyl-Seq DNA Library 
Prep Kit (IDT), following the kit’s protocol with few modifications. 
All indexing PCR reagents were substituted with the HiFi HotStart 
Uracil+ ReadyMix (KAPA), and 11–12 PCR cycles were performed to 
achieve library yields higher than 500 ng for downstream experiments. 
For probes hybridization, 500 ng of each library of up to 12 samples 
were pooled together and captured using the xGen Hybridization and 
Wash Kit (IDT) following the xGen hybridization capture of DNA 
libraries protocol (version 4). The multiplexed libraries were dried 
together with the custom xGen Blocking Oligos and Human Cot 
DNA. Probes hybridization occurred during overnight incubation 
with custom xGen Lockdown Probes at 65°C. The captured DNA was 
amplified for 11 PCR cycles according to the panel size. Pre- and post-
capture libraries were quantified using Qubit dsDNA High Sensitivity 
Assay (Invitrogen), and the quality was assessed with the Bioanalyzer 
High Sensitivity DNA Kit (Agilent). Libraries were sequenced on 
Illumina NovaSeq 6000 or MiSeq sequencing machines, with variable 
nominal depth based on the run and sample type (∼100X for genomic 
DNA, ∼1000X for cfDNA samples).

Data Processing
FASTQ files were processed with the methyl-seq pipeline version 

1.6 from the nf-core repository (59) (https://nf-co.re/). Using the  
command:

nextflow run nf-core/methylseq -r 1.6 -profile docker –aligner bismark –input 
$FASTQ_PATH –genome hg19 –accel

β values for each CpG are obtained from Bismark coverage files 
as M/(U+M) where M is the count of methylated reads, and U is the 
count of unmethylated reads. The on-target rate was estimated with 
deeptools (60). Conversion efficiency was estimated using CHH/CHG 
sites, as no methylation is expected in those contexts in any tissue 
of our interest. Downstream analyses were performed with custom 
scripts with the methods detailed below. One sample from the 

Alisertib cohort and 9 samples from the MD Anderson cohort were 
excluded from the analysis due to insufficient coverage.

Tumor Content Estimation
An optimally informative CpG cluster region would reflect the 

tumor content (TC) of a cfDNA sample directly: observing a β of 0.7 
would imply that the TC is around 0.7. Clearly, this observation can 
be extended to many CpG sites and works when inverting the dif-
ferential methylation sign. Averaging several CpG sites spread across 
the genome would lead to a stable estimation of TC, likely balancing 
out the possible local fluctuations dictated by copy number changes, 
biological variability, and coverage. To estimate the tumor content 
for a sample, we start with the β values measured in the dedicated 
regions. We here outline the procedure for hypermethylated regions 
in CRPC compared with WBC, and the same holds for regions with 
inverse profiles. This strategy is inspired by PAMES (48), with a few 
adaptations for the cfDNA setting.

First, we notice that the β in WBC is very close to zero, whereas 
the β in CRPC samples is high but not as extreme. This behavior is 
expected as tissue biopsies might contain immune cell infiltrates that 
would dilute the CRPC-specific signal. Consequently, it is reason-
able to assume that the DNA methylation state of those regions is 
opposite in WBC and CRPC cells and that the remaining variability is 
either technical or dictated by cell admixture. Thus, the DNA meth-
ylation level of any of those regions offers a proxy of tumor content. 
A first raw estimation of the tumor content is obtained as the median 
of the DNA methylation level across informative regions:

β β= −TCR i
T

i
Wmed ( med ( ))

where i is the index running through the informative regions, and 
TCR is the first raw tumor content estimation. We chose the median 
over the mean to increase stability in the case of outliers. Typically, 
the two peaks characterizing the bimodal nature of DNA methyla-
tion across all CpG sites are expected at 0 and 1. However, platform-
specific offsets can produce biases toward less extreme values (61). To 
account for such shifts, we rely on the average methylation level in 
WBCs: assuming concordant DNA methylation levels at selected loci, 
those samples provide a reliable estimation of the expected technical 
offsets. Following this idea, we correct the first estimation as follows:

=
−

TC
TC
h o

R

where h and o are the platform offsets estimated in WBC for the fully 
methylated and demethylated regions, respectively. This procedure is 
equivalent to stretching over the available signal range to populate the 
range [0–1]. Regions that fall below zero or above one are set to zero 
and one, respectively. Finally, to check the stability of the estimation of 
every single sample, we iteratively used 50% of regions and performed 
100 permutations using only that subsection. High variability across 
permutations (i.e., >25%) would suggest conflicting signals in single 
regions, pointing to possible cases of poor estimation or to samples 
with unexpected tissue of origin. Finally, we utilize a collection of 
healthy cfDNA profiles as the reference background for TC estimation 
in plasma-derived samples instead of WBC profiles. This modifica-
tion has only a marginal effect on high tumor-content samples but 
prevents spurious tumor content estimation driven by small fractions 
of healthy cfDNA of nonhematopoietic origin. Notably, we observed 
saturation of signal in few cases, with our TC estimation reaching 
almost 100%. Those events are rare and present only in the most 
aggressive cohorts, suggesting that the high quantity of ctDNA in 
circulation shadows the healthy cfDNA background.

Read-based Tumor Content Detection
To validate our tumor content estimation in the lower spectrum 

(TC  <  15%), we adapted a read-based metric previously introduced 
in CancerDetector (16) Alpha value. Complementing the standard 
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β value, the Alpha value of each read overlapping an informative region 
is computed as the fraction of methylated CpG over the total CpG. 
This metric allows for a more precise distinction between different 
read configurations that might generate the same β values. We leverage 
the Alpha value of tumor content informative regions to first exclude 
any read that does not exhibit a totally coherent behavior, retaining 
reads with at least 4 CpG sites, at least 100-bp overlap with informative 
regions, and an Alpha value of 0 or 1. Next, based on the direction of 
differential methylation, we compute the fraction of reads supporting 
tumor-derived signal versus the total. We compare the fraction of sup-
porting reads for all informative regions between each ctDNA sample 
with cfDNA from healthy donors (HD). A significantly higher fraction 
of tumor-supporting signal compared to HDs (Wilcoxon signed rank 
test) indicates the presence of a subpopulation of tumor-derived reads, 
which is expected to be proportional to the tumor content.

PE Score Estimation
We sought to construct an NE-evidence score to detect CRPC-NE. 

As tumor content is a major confounder of DNA methylation signal, 
we use a strategy that is aware of this covariate and leverages the 
previously obtained TC estimation. We first constructed a reference 
of highly pure CRPC-Adeno and CRPC-NE solid tumor samples 
(TC > 0.8, NE = 10, Adeno = 29) and collected healthy cfDNA as a ref-
erence for noncancer cfDNA. Next, we reconstruct the observed sig-
nal as a linear combination of 3 components: cfDNA (known, 1-TC), 
CRPC-Adeno, and CRPC-NE. Intuitively, we seek to reconstruct the 
observed signal as the combination of healthy and cancer-derived 
signals, knowing that the total contribution of the latter should be 
equal to the previously estimated tumor content. This result can be 
obtained with the following framework. First, for each region, we esti-
mate the mean (μ) and SD (σ) of β values for each region in the three 
reference groups. For each informative region, the observed cfDNA 
profile can be modeled as a linear combination of three components, 
and the global estimation of the relative fractions is achieved using 
a Bayesian linear regression (implemented in the R package “brms,” 
with: “nchain = 1,” 500 burn-in steps and 2,000 sampling steps) with 
strongly informative priors on the cfDNA fraction and noninforma-
tive priors on the CRPC-Adeno and CRPC-NE components.

fcf ∼ Norm (1 – TC, 0.01)
fAd ∼ Norm (TC/2,0.5)
fNE ∼ Norm (TC/2,0.5)
βobs = fcf μcf + fAdμAd + fNEμNE

Furthermore, the regression is weighted on the basis of the inverse 
of the SD of each region in CRPC-Adeno and CRPC-NE samples, 
increasing the contributions of regions that are more stable. After the 
regression coefficients are estimated, negative values are set to 0, and 
the remaining coefficients are normalized to sum to one, following 
widely adopted a posteriori constraints applied in cell-type decon-
volution (62). Once the fraction of NE contribution is obtained, it 
is normalized over the total tumor content to obtain the PE score, 
which ranges from 0 to 1 and is independent of the tumor content. A 
tissue-informed binary threshold of 0.43 was obtained by computing 
the PE score on all the solid tissue biopsies analyzed and setting the 
threshold between the means of the two distributions. Notably, a sin-
gle CRPC-NE outlier with a low PE score has a transcriptomic profile 
compatible with CRPC-Adeno, as reported in a recent study (32). We 
noticed that propagating the uncertainty in tumor content estima-
tion partially hampers the reliability of the PE score below 10% and 
makes it uninformative below 3%. We opted not to provide any PE 
score assessment for cfDNA samples with a TC below 3%, although 
we suggest caution in interpreting the PE score between 5% to 10% 
of tumor content. To test the analytical stability of the PE score 
(Supplementary Fig. S4F), we collected a set of representative ctDNA 
samples at high tumor content and heterogenous PE score from 
this study, and we mixed DNA methylation signals with increasing 

fractions of healthy cfDNA signal, following the equation βd  =  βct 
(d) + βcf (1–d), where d indicates decreasing dilution factors (0–1, step 
0.1). Importantly, the tumor content estimation and the PE score 
estimation procedures are tailored to the NEMO design, providing 
the required performance in this specific setting. We chose to develop 
this tailored approach over standard deconvolutions to better lever-
age the stepwise estimations of the NEMO modules. However, these 
strategies were not developed as generally applicable tumor content 
estimation or deconvolution algorithms. Average coverage for NEMO 
regions in all the samples reanalyzed in this work are reported in Sup-
plementary Table S10.

Lung Cancer Analysis
To evaluate the performance of the NEMO assay in a differ-

ent setting, we evaluated published DNA methylation data of lung 
adenocarcinoma (LUAD) and small-cell lung cancer (SCLC) cell lines 
(https://depmap.org) and solid tissue biopsies (TCGA-LUAD, SCLC 
(63)). As all those samples were profiled using the Illumina HM450 
methylation array, we limited the analysis to a subset of probes con-
tained in the NEMO design (n = 866). Differential methylation analy-
sis was performed using cell lines and PBMC samples and prioritizing 
differentially methylated CpGs to estimate tumor content (n =  50) 
and PE score (n = 200). Next, the NEMO statistical framework was 
applied to solid tissue biopsy data based on this adapted subset of 
informative regions and using the average of cancer cell and PBMC 
lines as the reference.

Integrative Gene Expression Analysis of PDX Samples and 
WCDT Cohort

Gene expression data for the PDX samples were retrieved from 
Recount3 (refs. 23, 64; SRP183532), except for the LuCaP 243 PDX 
model, for which counts have been obtained from the Nelson Lab and 
integrated with the other PDX models. The GSEA analysis was per-
formed with clusterprofiler (65): each gene was correlated with the PE 
score and ranked by correlation coefficient. In addition to the 12 PDX 
models profiled with NEMO, we utilized a larger set of 18 PDX DNA 
methylation profiles (EPIC array, GSE227814, and GSE227695). The 
genome-wide array data were masked using the NEMO design, obtain-
ing the average DNA methylation value for each informative region 
with at least one probe. Gene expression data for the WCDT cohort 
were obtained from the GDC portal (https://portal.gdc.cancer.gov/, 
WCDT-MCRPC). For the association analysis between DNA methyla-
tion and gene expression, only the common genes measured in both 
PDXs and WCDT cohorts were retained. First, the correlation of each 
informative region was tested against the gene expression of the cor-
responding annotated gene, following the annotation obtained with 
HOMER (66). For each gene, only the regions with a range of β values 
greater than 0.5 across PDXs were tested, and only the region with the 
most significant correlation was retained. The same regions were then 
tested for correlation in the WCDT cohort, retaining only samples 
with tumor content greater than 75%. In both cases, P values were 
corrected with the FDR procedure. Regulon activity was computed 
using VIPER (67) and Dorothea pan-cancer regulons (34). For the sur-
vival analyses based on EZH2 expression and DNA methylation, only 
WCDT samples with tumor content greater than 50% were retained. 
Survival data were retrieved from https://github.com/DavidQuigley/
WCDT/tree/master/clinical_metadata. In the case of DNA methyla-
tion, the β value was corrected by regressing out the nontumoral 
component using our healthy cfDNA reference, as infiltrating WBCs 
might confound the real underlying DNA methylation value. Briefly, 
DNA methylation values were transformed with an arcsine transfor-
mation (f (x) = arcsin(2x – 1)), as described in the infiniumPurify frame-

work (68). Next, the corrected β was obtained as = − −
β

β β TC
TC

T
Obs C (1 )

 

and remapped in the original space with the inverse transformation. 
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The same procedure was applied to cfDNA samples with TC greater 
than 20% for Supplementary Fig. S5C (from the PRIME, WCM/DFCI, 
and both phase II clinical trial cohorts).

Genomic Analysis of NEMO Samples
We focused on the PRIME cohort in which orthogonal genomic data 

is available to test whether regions included in NEMO and additional 
off-target reads could inform on the copy-number state of regions of 
interest, both within and outside our design. The 20 samples were pro-
filed with PCF select (ref), a targeted panel optimized to capture genomic 
alterations in the CRPC settings, which serves as a gold standard in this 
context. Importantly, the PCF select panel contains a set of 116 genes 
with only partial overlap with NEMO. First, we sought to leverage off-
target reads from our assay to obtain broad copy-number estimations 
using IchorCNA (ref. 69; Supplementary Fig. S7A). The command was 
run with a bin size of 500 Kb and the following parameters:

–ploidy “c(2,3)” –normal “c(0.5,0.6,0.7,0.8,0.9)” –maxCN 5 –include-
HOMD False –chrs “c(1:22, \“X\”)” –chrTrain “c(1:22)” –estimateNormal 
True –estimatePloidy True –estimateScPrevalence True –scStates “c(1,3)” 
–txnE 0.9999 –txnStrength 10000

A panel of normal samples was created by mixing the 3 cfDNA 
from healthy donors (HD). As for some genes of interest which often 
present focal gain or losses (AR, TP53), a target region was available 
within the NEMO panel; we calculated regional log2R as previously 
described (30). We aggregate those estimations prioritizing the log2R 
of the target amplicon when available. The comparison between the 
log2R is reported in Supplementary Fig. S7B, highlighting the good 
concordance between the two assays.

Data Analysis and Statistics
Unless otherwise stated, all pairwise tests are unpaired and two-

tailed Wilcoxon rank sum tests. All reported boxplot are based on 
first quartile, median, and third quartile, with whiskers extending up 
to 1.5 IQR. Unless differently specified, all correlation coefficients are 
Pearson R rounded to the second digit. Survival data for the Alisertib 
cohort and MD Anderson cohort were received from corresponding 
authors of the original studies (refs. 20, 21; notice that survival data 
was not available for all samples). Kaplan–Meier curves and log-rank 
P values were computed and plotted using the survival and survminer R 
packages, and survival data are included in Supplementary Table S6A 
and S6B. A forward feature selection procedure for Cox proportional 
HR was used for the multivariate analysis reported in Supplementary 
Fig. S6D to minimize AIC and including TC, PE score, and all inclu-
sion criteria in each trial as predictive variables. Reported analyses 
and plots were created with R 4.1.2 with tidyverse packages. Given 
the retrospective nature of this study, no randomization was applied. 
Considering the need to measure the classification performance, no 
sample blinding was applied. No power analysis was conducted, and 
size was dictated by sample availability. Replication of patient-derived 
samples was not conducted due to limited input material availability.

Data Availability
An R package to compute tumor content and PE score from DNA 

methylation counts is available at (https://github.com/demichelislab/
NEMOcode). Raw counts and processed values are available at Zenodo 
(https://doi.org/10.5281/zenodo.8431083), including region-wise and  
CpG-wise DNA methylation values for samples sequenced with the 
NEMO assay and reprocessed masked samples, and in the GEO reposi-
tory (GSE245745). Raw WGBS data have been deposited in dbGaP 
(WGBS: phs001752v2).
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