668 research outputs found

    Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum

    Get PDF
    BACKGROUND: In general, chemotaxis in Rhizobium has not been well characterized. Methyl accepting chemotaxis proteins are sensory proteins important in chemotaxis of numerous bacteria, but their involvement in Rhizobium chemotaxis is unclear and merits further investigation. RESULTS: A putative methyl accepting chemotaxis protein gene (mcpG) of Rhizobium leguminosarum VF39SM was isolated and characterized. The gene was found to reside on the nodulation plasmid, pRleVF39d. The predicted mcpG ORF displayed motifs common to known methyl-accepting chemotaxis proteins, such as two transmembrane domains and high homology to the conserved methylation and signaling domains of well-characterized MCPs. Phenotypic analysis of mcpG mutants using swarm plates did not identify ligands for this putative receptor. Additionally, gene knockouts of mcpG did not affect a mutant strain's ability to compete for nodulation with the wild type. Notably, mcpG was found to be plasmid-encoded in all strains of R. leguminosarum and R. etli examined, though it was found on the nodulation plasmid only in a minority of strains. CONCLUSIONS: Based on sequence homology R. leguminosarum mcpG gene codes for a methyl accepting chemotaxis protein. The gene is plasmid localized in numerous Rhizobium spp. Although localized to the sym plasmid of VF39SM mcpG does not appear to participate in early nodulation events. A ligand for McpG remains to be found. Apparent McpG orthologs appear in a diverse range of proteobacteria. Identification and characterization of mcpG adds to the family of mcp genes already identified in this organism

    Efficient Sensing of Avian Influenza Viruses by Porcine Plasmacytoid Dendritic Cells

    Get PDF
    H5N1 influenza A virus (IAV) infections in human remain rare events but have been associated with severe disease and a higher mortality rate compared to infections with seasonal strains. An excessive release of pro-inflammatory cytokine together with a greater virus dissemination potential have been proposed to explain the high virulence observed in human and other mammalian and avian species. Among the cells involved in the cytokine storm, plasmacytoid dendritic cells (pDC) could play an important role considering their unique capacity to secrete massive amounts of type I interferon (IFN). Considering the role of IFN as a major component of antiviral responses as well as in priming inflammatory responses, we aimed to characterize the induction of IFN-α release upon infection with IAV originating from various avian and mammalian species in a comparative way. In our porcine pDC model, we showed that the viral components triggering IFN responses related to the ability to hemagglutinate, although virosomes devoid of viral RNA were non-stimulatory. Heat-treatment at 65 °C but not chemical inactivation destroyed the ability of IAV to stimulate pDC. All IAV tested induced IFN-α but at different levels and showed different dose-dependencies. H5 and H7 subtypes, in particular H5N1, stimulated pDC at lower doses when compared to mammalian IAV. At high viral doses, IFN-α levels reached by some mammalian IAV surpassed those induced by avian isolates. Although sialic acid-dependent entry was demonstrated, the α-2,3 or α-2,6 binding specificity alone did not explain the differences observed. Furthermore, we were unable to identify a clear role of the hemagglutinin, as the IFN-α doses-response profiles did not clearly differ when viruses with all genes of identical avian origin but different HA were compared. This was found with IAV bearing an HA derived from either a low, a high pathogenic H5N1, or a human H3. Stimulation of pDC was associated with pDC depletion within the cultures. Taken together and considering the efficient sensing of H5N1 at low dose, pDC on one side may play a role in the cytokine storm observed during severe disease, on the other hand could participate in early antiviral responses limiting virus replication

    Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf

    Get PDF
    Most molecular processes during plant development occur with a particular spatio-temporal specificity. Thus far, it has remained technically challenging to capture dynamic protein-protein interactions within a growing organ, where the interplay between cell division and cell expansion is instrumental. Here, we combined high-resolution sampling of the growing maize (Zea mays) leaf with tandem affinity purification followed by mass spectrometry. Our results indicate that the growth-regulating SWI/SNF chromatin remodeling complex associated with ANGUSTIFOLIA3 (AN3) was conserved within growing organs and between dicots and monocots. Moreover, we were able to demonstrate the dynamics of the AN3-interacting proteins within the growing leaf, since copurified GROWTH-REGULATING FACTORs (GRFs) varied throughout the growing leaf. Indeed, GRF1, GRF6, GRF7, GRF12, GRF15, and GRF17 were significantly enriched in the division zone of the growing leaf, while GRF4 and GRF10 levels were comparable between division zone and expansion zone in the growing leaf. These dynamics were also reflected at the mRNA and protein levels, indicating tight developmental regulation of the AN3-associated chromatin remodeling complex. In addition, the phenotypes of maize plants overexpressing miRNA396a-resistant GRF1 support a model proposing that distinct associations of the chromatin remodeling complex with specific GRFs tightly regulate the transition between cell division and cell expansion. Together, our data demonstrate that advancing from static to dynamic protein-protein interaction analysis in a growing organ adds insights in how developmental switches are regulated

    Broad snouted cladoselachian with sensory specialization at the base of modern chondrichthyans

    Full text link
    Throughout the Silurian and Devonian, cartilaginous fish successively evolved their specialized skeletal and dental characteristics, and increasingly refined their sensory systems. The Late Devonian shark taxon Maghriboselache mohamezanei gen. et sp. n. from the eastern Anti-Atlas of Morocco is known from multiple specimens preserving most of its skeletal features, which in some instances are preserved in three dimensions. Key details of the dentition, jaws, and pectoral skeleton are shared with the iconic genus Cladoselache. Phylogenetic analyses place the family Cladoselachidae as the sister group of symmoriiforms and these groups as sister group of the holocephalans. Further phylogenetic results corroborate that the initial evolutionary radiation of crown chondrichthyans occurred within or before the Late Devonian. Remarkably, this new stem holocephalan is equipped with a wide snout and large laterally separated nasal capsules: the earliest known example of this condition in the chondrichthyan and (perhaps) gnathostome record. This suggests sensory specialization approaching that of extant broad-rostrum elasmobranchs and represents a significant addition to increasingly apparent ecomorphological diversity among early chondrichthyans

    Characterization and functional analysis of seven flagellin genes in Rhizobium leguminosarum bv. viciae. Characterization of R. leguminosarum flagellins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhizobium leguminosarum </it>bv. <it>viciae </it>establishes symbiotic nitrogen fixing partnerships with plant species belonging to the Tribe Vicieae, which includes the genera <it>Vicia, Lathyrus, Pisum </it>and <it>Lens</it>. Motility and chemotaxis are important in the ecology of <it>R. leguminosarum </it>to provide a competitive advantage during the early steps of nodulation, but the mechanisms of motility and flagellar assembly remain poorly studied. This paper addresses the role of the seven flagellin genes in producing a functional flagellum.</p> <p>Results</p> <p><it>R. leguminosarum </it>strains 3841 and VF39SM have seven flagellin genes (<it>flaA</it>, <it>flaB, flaC, flaD, flaE, flaH</it>, and <it>flaG</it>), which are transcribed separately. The predicted flagellins of 3841 are highly similar or identical to the corresponding flagellins in VF39SM. <it>flaA, flaB, flaC</it>, and <it>flaD </it>are in tandem array and are located in the main flagellar gene cluster. <it>flaH </it>and <it>flaG </it>are located outside of the flagellar/motility region while <it>flaE </it>is plasmid-borne. Five flagellin subunits (FlaA, FlaB, FlaC, FlaE, and FlaG) are highly similar to each other, whereas FlaD and FlaH are more distantly related. All flagellins exhibit conserved amino acid residues at the N- and C-terminal ends and are variable in the central regions. Strain 3841 has 1-3 plain subpolar flagella while strain VF39SM exhibits 4-7 plain peritrichous flagella. Three flagellins (FlaA/B/C) and five flagellins (FlaA/B/C/E/G) were detected by mass spectrometry in the flagellar filaments of strains 3841 and VF39SM, respectively. Mutation of <it>flaA </it>resulted in non-motile VF39SM and extremely reduced motility in 3841. Individual mutations of <it>flaB </it>and <it>flaC </it>resulted in shorter flagellar filaments and consequently reduced swimming and swarming motility for both strains. Mutant VF39SM strains carrying individual mutations in <it>flaD, flaE, flaH</it>, and <it>flaG </it>were not significantly affected in motility and filament morphology. The flagellar filament and the motility of 3841 strains with mutations in <it>flaD </it>and <it>flaG </it>were not significantly affected while <it>flaE </it>and <it>flaH </it>mutants exhibited shortened filaments and reduced swimming motility.</p> <p>Conclusion</p> <p>The results obtained from this study demonstrate that FlaA, FlaB, and FlaC are major components of the flagellar filament while FlaD and FlaG are minor components for <it>R. leguminosarum </it>strains 3841 and VF39SM. We also observed differences between the two strains, wherein FlaE and FlaH appear to be minor components of the flagellar filaments in VF39SM but these flagellin subunits may play more important roles in 3841. This paper also demonstrates that the flagellins of 3841 and VF39SM are possibly glycosylated.</p

    Salivary pellicles equalise surfaces' charges and modulate the virulence of Candida albicans biofilm

    Get PDF
    Numerous environmental factors influence the pathogenesis of Candida biofilms and an uderstanding of these is necessary for appropriate clinical management. Aims: To investigate the role of material type, pellicle and stage of biofilm development on the viability, bioactivity, virulence and structure of C. albicans biofilms. Methods: The surface roughness (SR) and surface free energy (SFE) of acrylic and titanium discs was measured. Pellicles of saliva, or saliva supplemented with plasma, were formed on acrylic and titanium discs. Candida albicans biofilms were then generated for 1.5 h, 24 h, 48 h and 72 h. The cell viability in biofilms was analysed by culture, whilst DNA concentration and the expression of Candida virulence genes (ALS1, ALS3 and HWP1) were evaluated using qPCR. Biofilm metabolic activity was determined using XTT reduction assay, and biofilm structure analysed by Scanning Electron Microscopy (SEM). Results: Whilst the SR of acrylic and titanium did not significantly differ, the saliva with plasma pellicle increased significantly the total SFE of both surface. The number of viable microorganisms and DNA concentration increased with biofilm development, not differing within materials and pellicles. Biofilms developed on saliva with plasma pellicle surfaces had significantly higher activity after 24 h and this was accompanied with higher expression of virulence genes at all periods. Conclusion: Induction of C. albicans virulence occurs with the presence of plasma proteins in pellicles, throughout biofilm growth. To mitigate such effects, reduction of increased plasmatic exudate, related to chronic inflammatory response, could aid the management of candidal biofilm-related infections

    Salivary pellicles equalise surfaces’ charges and modulate the virulence of candida albicans biofilm

    Get PDF
    Numerous environmental factors influence the pathogenesis of Candida biofilms and an understanding of these is necessary for appropriate clinical management. Aims To investigate the role of material type, pellicle and stage of biofilm development on the viability, bioactivity, virulence and structure of C. albicans biofilms. Methods The surface roughness (SR) and surface free energy (SFE) of acrylic and titanium discs was measured. Pellicles of saliva, or saliva supplemented with plasma, were formed on acrylic and titanium discs. Candida albicans biofilms were then generated for 1.5 h, 24 h, 48 h and 72 h. The cell viability in biofilms was analysed by culture, whilst DNA concentration and the expression of Candida virulence genes (ALS1, ALS3 and HWP1) were evaluated using qPCR. Biofilm metabolic activity was determined using XTT reduction assay, and biofilm structure analysed by Scanning Electron Microscopy (SEM). Results Whilst the SR of acrylic and titanium did not significantly differ, the saliva with plasma pellicle increased significantly the total SFE of both surface. The number of viable microorganisms and DNA concentration increased with biofilm development, not differing within materials and pellicles. Biofilms developed on saliva with plasma pellicle surfaces had significantly higher activity after 24 h and this was accompanied with higher expression of virulence genes at all periods. Conclusion Induction of C. albicans virulence occurs with the presence of plasma proteins in pellicles, throughout biofilm growth. To mitigate such effects, reduction of increased plasmatic exudate, related to chronic inflammatory response, could aid the management of candidal biofilm-related infections66129140COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP007355/2013-002012/07436-
    • 

    corecore