307 research outputs found

    Discernible effects of tDCS over the primary motor and posterior parietal cortex on different stages of motor learning

    Get PDF
    Implicit motor learning and memory involve complex cortical and subcortical networks. The induction of plasticity in these network components via non-invasive brain stimulation, including transcranial direct current stimulation (tDCS), has shown to improve motor learning. However, studies showing these effects are mostly restricted to stimulation of the primary motor cortex (M1) during the early stage of learning. Because of this, we aimed to explore the efficacy of anodal tDCS applied over the posterior parietal cortex (PPC), which is involved in memory processes, on serial reaction time task (SRTT) performance. Specifically, to evaluate the involvement of both motor learning network components, we compared the effects of tDCS applied over regions corresponding to M1 and PPC during the early and late stages of learning. The results revealed a selective improvement of reaction time (RT) during anodal stimulation over the PPC in the late stage of learning. These findings support the assumption that the PPC is relevant during specific phases of learning, at least for SRTT performance. The results also indicate that not only the target area (i.e., PPC), but also timing is crucial for achieving the effects of stimulation on motor learning.Michael A. Nitsche receives support by the EC Horizon 2020 Program, FET Grant, 686764-LUMINOUS, grants from the German Ministry of Research and Education (GCBS grant 01EE1403C, TRAINSTIM grant 01GQ1424E), and is member of the scientific advisory boards of Neuroelectrics, and NeuroDevice. The other authors declare that they have no conflict of interest. This research did not receive any specific grant from funding agencies in the public, commercial, or non-for-profit sectors. G. Nathzidy Rivera-Urbina receives support from the Mexican Government, Grant UABC-PTC-610 DSA/103.5/16/1024 (PRODEP).Departamento de Psicología Evolutiva y de la Educació

    Single session and repeated anodal transcranial direct current stimulation over the right dorsolateral prefrontal cortex increases reflective thinking but not working memory updating performance

    Get PDF
    Background: Anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (DLPFC) has shown to have effects on different domains of cognition yet there is a gap in the literature regarding effects on reflective thinking performance. Objective: The current study investigated if single session and repeated anodal tDCS over the right DLPFC induces effects on judgment and decision-making performance and whether these are linked to working memory (updating) performance or cognitive inhibition. Methods: Participants received anodal tDCS over the right DLPFC once (plus sham tDCS in a second session) or twice (twenty-four hours apart). In the third group participants received a single session of sham stimulation only. Cognitive characteristic measures were administered pre-stimulation (thinking disposition, impulsivity, cognitive ability). Experimental tasks included two versions of the Cognitive Reflection Test (numeric vs verbal-CRT), a set of incongruent base-rate vignettes, and two working memory tests (Sternberg task and n-back task). Forty-eight participants (mean age = 26.08 ± 0.54 years; 27 females) were recruited. Results: Single sessions of tDCS were associated with an increase in reflective thinking performance compared to the sham conditions, with stimulation improving scores on incongruent base rate tasks as well as marginally improving numeric CRT scores (compared to sham), but not thinking tasks without a numeric component (verbal-CRT). Repeated anodal stimulation only improved numeric CRT scores. tDCS did not increase working memory (updating) performance. These findings could not be explained by a practice effect or a priori differences in cognitive characteristics or impulsivity across the experimental groups. Conclusion: The current results demonstrate the involvement of the right DLPFC in reflective thinking performance which cannot be explained by working memory (updating) performance or general cognitive characteristics of participants

    Anodal tDCS over Wernicke's area improves verbal memory and prevents the interference effect during words learning

    Get PDF
    Background: Wernicke's area is a key component of the cortical language network, and it is functionally related to the comprehension of oral and written language. In addition to its main role in the perception of language, some other functions related to verbal learning also seem to involve the activity of this cortical region. It is unknown whether different degrees of neuromodulation on this area determine its effect on word learning. Objective: We aimed to analyze the influence of the application of anodal transcranial DC stimulation (tDCS) over Wernicke's area at two different intensities on word learning. Method: We compared the effect of anodal tDCS at an intensity of 0.5 mA and 1.5 mA with sham tDCS, separately in different groups, on performance in a word learning and recall task. Results: The results show that 1.5 mA anodal tDCS improved performance. The number of words learned in this condition was higher compared with stimulation at 0.5 mA current strength and sham stimulation. Furthermore, stimulation with 1.5 mA specifically prevented the interference effect over word learning, compared to the other two tDCS conditions. Conclusions: These results show an intensity-dependent effect of anodal tDCS on verbal memory formation. These findings are discussed in the context of the various functions of Wernicke's area and the ability of tDCS to modulate the activity and functionality of this cortical area at different intensities.Departamento de Psicología Evolutiva y de la Educació

    Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex

    Get PDF
    Human subjects can quickly adapt and maintain performance of arm reaching when experiencing novel physical environments such as robot-induced velocity-dependent forcefields.Using anodal transcranial direct current stimulation (tDCS) this study showed that the primary motor cortex may play a role in motor adaptation of this sort. Subjects performed arm reaching movement trials in three phases: in a null force field (baseline), in a velocity-dependent force field (adaptation; 25 N sm−1) and once again in a null force field (de-adaptation). Active or sham tDCS was directed to the motor cortex representation of biceps brachii muscle during the adaptation phase of the motor learning protocol. During the adaptation phase, the global error in arm reaching (summed error from an ideal trajectory) was similar in both tDCS conditions. However, active tDCS induced a significantly greater global reaching (overshoot) error during the early stage of de-adaptation compared to the sham tDCS condition. The overshoot error may be representative of the development of a greater predictivemovement to overcome the expected imposed force. An estimate of the predictive, initial movement trajectory (signed error in the first 150 ms of movement) was significantly augmented during the adaptation phase with active tDCS compared to sham tDCS. Furthermore, this increase was linearly related to the change of the overshoot summed error in the de-adaptation process. Together the results suggest that anodal tDCS augments the development of an internal model of the novel adapted movement and suggests that the primary motor cortex is involved in adaptation of reaching movements of healthy human subjects

    Anodal-tDCS over the human right occipital cortex enhances the perception and memory of both faces and objects

    Get PDF
    Accurate face processing skills are pivotal for typical social cognition, and impairments in this ability characterise various clinical conditions (e.g., prosopagnosia). No study to date has investigated whether transcranial direct current stimulation (tDCS) can causally enhance face processing. In addition, the category- and the process- specificity of tDCS effects, as well as the role of the timing of neuromodulation with respect to the execution of cognitive tasks are still unknown. In this single-blind, sham-controlled study, we examined whether the administration of anodal-tDCS (a-tDCS) over the right occipital cortex of healthy volunteers (N = 64) enhances performance on perceptual and memory tasks involving both face and object stimuli. Neuromodulation was delivered in two conditions: online (a-tDCS during task execution) and offline (a-tDCS before task execution). The results demonstrate that offline atDCS enhances the perception and memory performance of both faces and objects. There was no effect of online a-tDCS on behaviour. Furthermore, the offline effect was site-specific since a-tDCS over the sensory-motor cortex did not lead to behavioural changes. Our results add relevant information about the breadth of cognitive processes and visual stimuli that can be modulated by tDCS, and about the design of effective neuromodulation protocols, which have implications for advancing theories in cognitive neuroscience and clinical applications

    Studying the Neurobiology of Social Interaction with Transcranial Direct Current Stimulation—The Example of Punishing Unfairness

    Get PDF
    Studying social behavior often requires the simultaneous interaction of many subjects. As yet, however, no painless, noninvasive brain stimulation tool existed that allowed the simultaneous affection of brain processes in many interacting subjects. Here we show that transcranial direct current stimulation (tDCS) can overcome these limits. We apply right prefrontal cathodal tDCS and show that subjects' propensity to punish unfair behavior is reduced significantl

    Multiple Sessions of Transcranial Direct Current Stimulation (tDCS) Reduced Craving and Relapses for Alcohol Use: A Randomized Placebo-Controlled Trial in Alcohol Use Disorder

    Get PDF
    Background: Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, has been studied as an adjunctive therapeutic agent for alcohol dependence. In a previous study, we showed that five consecutive sessions of tDCS applied bilaterally over the dorsolateral prefrontal cortex (dlPFC) reduced relapse to the use of alcohol in alcohol use disorder (AUD) outpatients. However, no changes on craving scores were observed. In the present study, we investigated if an extended number of sessions of the same intervention would reduce craving and relapses for alcohol use in AUD inpatients.Methods: Thus, a randomized, double-blind, sham-controlled, clinical trial with parallel arms was conducted (https://clinicaltrials.gov/ct2/show/NCT02091284). AUD patients from two private and one public clinics for treatment of drug dependence were randomly allocated to two groups: real tDCS (5 × 7 cm2, 2 mA, for 20 min, cathodal over the left dlPFC, and anodal over the right dlPFC) and sham-tDCS. Real or sham-tDCS was applied once a day, every other day, in a total of 10 sessions. Craving was monitored by a 5-item obsessive compulsive drinking scale once a week (one time before, three times during and once after brain stimulation) over about 5 weeks.Results: Craving scores progressively decreased over five measurements in both groups but were significantly reduced only in the real tDCS group after treatment. Corrected Hedges' within-group (initial and final) effect sizes of craving scores were of 0.3 for the sham-tDCS and of 1.1 for the real tDCS group. Effect size was 3-fold larger in the real tDCS group. In addition, the between-group analysis on craving score difference was nearly significant, and the effect size was 0.58, in favor for a larger effect in the real tDCS group when compared to sham-tDCS. Furthermore, in a 3-months follow-up after intervention, 72.2% of sham-tDCS group relapsed to the alcohol use whereas 72.7% of tDCS group were abstinent.Conclusions: Multiple sessions of bilateral prefrontal tDCS were well tolerated with no significant adverse events. Thus, extended repetitive bilateral tDCS over the dlPFC is a promising adjunctive clinical tool that could be used to reduce alcohol craving and relapses and facilitate alcoholism cessation

    Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex

    Get PDF
    Animal studies using polarising currents have shown that induction of synaptic long-term potentiation (LTP) and long-term depression (LTD) by bursts of patterned stimulation is affected by the membrane potential of the postsynaptic neurone. The aim of the present experiments was to test whether it is possible to observe similar phenomena in humans with the aim of improving present protocols of inducing synaptic plasticity for therapeutic purposes. We tested whether the LTP/LTD-like after effects of transcranial theta-burst stimulation (TBS) of human motor cortex, an analogue of patterned electrical stimulation in animals, were affected by simultaneous transcranial direct-current stimulation (tDCS), a non-invasive method of polarising cortical neurones in humans. Nine healthy volunteers were investigated in a single-blind, balanced cross-over study; continuous TBS (cTBS) was used to introduce LTD-like after effects, whereas intermittent TBS (iTBS) produced LTP-like effects. Each pattern was coupled with concurrent application of tDCS (<200 s, anodal, cathodal, sham). Cathodal tDCS increased the response to iTBS and abolished the effects of cTBS. Anodal tDCS changed the effects of cTBS towards facilitation, but had no impact on iTBS. Cortical motor thresholds and intracortical inhibitory/facilitatory networks were not altered by any of the stimulation protocols. We conclude that the after effects of TBS can be modulated by concurrent tDCS. We hypothesise that tDCS changes the membrane potential of the apical dendrites of cortical pyramidal neurones and that this changes the response to patterned synaptic input evoked by TBS. The data show that it may be possible to enhance LTP-like plasticity after TBS in the human cortex
    • …
    corecore