13,511 research outputs found
The Use and Abuse of Special-Purpose Entities in Public Finance
States increasingly are raising financing indirectly through special-purpose entities (SPEs), variously referred to as authorities, special authorities, or public authorities. Notwithstanding their long history and increasingly widespread use, relatively little is known or has been written about these entities. This article examines state SPEs and their functions, comparing them to SPEs used in corporate finance. States, even more than corporations, use these entities to reduce financial transparency and avoid public scrutiny, seriously threatening the integrity of public finance. The article analyzes how regulation could be designed in order to control that threat while maintaining the legitimate financing benefits provided by these state entities
Sequential Sectioning of the Ulnar Collateral Ligament of the Elbow in Cadaveric Arms with Ulnohumeral Laxity Assessed by Dynamic Ultrasonography
Objectives: Injury of the ulnar collateral ligament (UCL), whether acute or chronic, is potentially career-threatening for elite overhead throwing athletes. Dynamic ultrasound (DUS) allows for rapid, cost-effective, non-invasive, and non-radiating evaluation of the UCL and elbow joint both at rest and with applied stress. The purpose of this study was to determine the amount of cadaveric elbow valgus laxity with sequential UCL sectioning using DUS. Our objective was to quantify which portions of the UCL must be injured to cause the varying levels of laxity seen clinically on DUS testing. No prior study has used DUS to quantify valgus joint laxity with sequential cadaveric UCL sectioning. It was hypothesized that the change in laxity due to release of the anterior band of the UCL would be greater than that seen when the posterior and transverse bands were cut. Methods: Twelve cadaveric elbows were dissected free of skin and subcutaneous tissue by an experienced orthopaedic surgeon. Baseline DUS at rest and with applied valgus stress was then performed by an experienced ultrasonographer. Sequential sectioning of the medial elbow soft-tissue stabilizing structures was then carried out with valgus stress applied to the joint at each sectioning interval utilizing a standardized device (Telos, Marburg, Germany). First the transverse band of the UCL was released, followed by the posterior band, then the anterior bundle of the anterior band, the remaining posterior bundle of the anterior band, and finally the complete flexor pronator mass. Results: Mean ulnohumeral laxity in millimeters with 95% CIs was calculated for each step of the sequence. The deltas between each step of the dissection were also calculated with means and 95% CIs. Mean baseline laxity of the unstressed ulnohumeral joint at rest was 3.2 mm (CI, 2.2-4.2); with the addition of valgus stress, mean laxity was 4.7 mm (CI, 3.5-6.0). When the transverse band was cut, ulnohumeral laxity increased to a mean of 5.5 mm (CI, 4.0-7.0). With release of the posterior band, mean laxity was 6.4 mm (CI, 4.3-8.5). When the anterior bundle of the anterior band of the UCL was cut, mean ulnohumeral laxity was 8.4 mm (CI, 5.7-11.0) and when the entire anterior band was released, mean laxity was 10.9 mm (CI, 7.8-14.0). Complete release of the flexor pronator muscle mass resulted in mean ulnohumeral laxity of 15.5 mm (CI, 12.9-18.1). The largest deltas were observed with release of the anterior bundle of the anterior band (2.0 mm; CI, 1.0-3.0), the entire anterior band (2.6 mm; CI, 1.3-3.8), and flexor pronator mass (4.6 mm; CI, 1.3-3.8). Release of the transverse and posterior bands of the UCL resulted in deltas of 0.74 mm (CI, 0.1-1.3) and 0.9 mm (CI, 0.3-1.5) respectively. Conclusion: DUS allows for rapid, cost-effective, non-invasive, non-radiating evaluation of the elbow joint and UCL both at rest and with applied valgus stress. Previous studies have indicated that DUS can identify abnormalities of the UCL associated with chronic degeneration and ligamentous injury including thickening of the anterior band of the UCL as well as hypoechoic foci/calcifications. The results of the current cadaveric study suggest that different changes in clinical laxity are seen on DUS with injury of particular bands of the UCL. Early identification and localization of injury to a particular band of the UCL may allow more appropriate selection of patients who will benefit from operative treatment. © The Author(s) 2013
Capital and Punishment: Resource Scarcity Increases Endorsement of the Death Penalty
Faced with punishing severe offenders, why do some prefer imprisonment whereas others impose death? Previous research exploring death penalty attitudes has primarily focused on individual and cultural factors. Adopting a functional perspective, we propose that environmental features may also shape our punishment strategies. Individuals are attuned to the availability of resources within their environments. Due to heightened concerns with the costliness of repeated offending, we hypothesize that individuals tend toward elimination-focused punishments during times of perceived scarcity. Using global and United States data sets (studies 1 and 2), we find that indicators of resource scarcity predict the presence of capital punishment. In two experiments (studies 3 and 4), we find that activating concerns about scarcity causes people to increase their endorsement for capital punishment, and this effect is statistically mediated by a reduced willingness to risk repeated offenses. Perceived resource scarcity shapes our punishment preferences, with important policy implications
Index to the Albany Times Union, July through December 1983
The Index to the Albany Times Union is an index to the one-star final edition of the Times Union of Albany, New York. The Index provides access to news and editorial opinion about Albany, the Capital District, and the State of New York. Items of national and international importance are indexed only when there is local, regional, or state impact. Daily sports events are not included. Births, engagements, divorces, anniversaries, and announcements of events or attractions are not indexed
Interactive ray tracing for volume visualization
Journal ArticleWe present a brute-force ray tracing system for interactive volume visualization, The system runs on a conventional (distributed) shared-memory multiprocessor machine. For each pixel we trace a ray through a volume to compute the color for that pixel. Although this method has high intrinsic computational cost, its simplicity and scalability make it ideal for large datasets on current high-end parallel systems
Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures
The electronic spin state of Fe^(2+) in ferropericlase, (Mg_(0.75)Fe_(0.25))O, transitions from a high-spin (spin unpaired) to low-spin (spin paired) state within the Earth’s mid-lower mantle region. To better understand the local electronic environment of high-spin Fe^(2+) ions in ferropericlase near the transition, we obtained synchrotron Mössbauer spectra (SMS) of (Mg_(0.75),Fe_(0.25))O in externally heated and laser-heated diamond anvil cells at relevant high pressures and temperatures. Results show that the quadrupole splitting (QS) of the dominant high-spin Fe^(2+) site decreases with increasing temperature at static high pressure. The QS values at constant pressure are fitted to a temperature-dependent Boltzmann distribution model, which permits estimation of the crystal-field splitting energy (Δ_3) between the d_(xy_ and d_(xz) or d_(zy) orbitals of the t_(2g) states in a distorted octahedral Fe^(2+) site. The derived Δ_3 increases from approximately 36 meV at 1 GPa to 95 meV at 40 GPa, revealing that both high pressure and high temperature have significant effects on the 3d electronic shells of Fe^(2+) in ferropericlase. The SMS spectra collected from the laser-heated diamond cells within the time window of 146 ns also indicate that QS significantly decreases at very high temperatures. A larger splitting of the energy levels at high temperatures and pressures should broaden the spin crossover in ferropericlase because the degeneracy of energy levels is partially lifted. Our results provide information on the hyperfine parameters and crystal-field splitting energy of high-spin Fe^(2+) in ferropericlase at high pressures and temperatures, relevant to the electronic structure of iron in oxides in the deep lower mantle
Stacking-induced fluorescence increase reveals allosteric interactions through DNA
From gene expression to nanotechnology, understanding and controlling DNA requires a detailed knowledge of its higher order structure and dynamics. Here we take advantage of the environment-sensitive photoisomerization of cyanine dyes to probe local and global changes in DNA structure. We report that a covalently attached Cy3 dye undergoes strong enhancement of fluorescence intensity and lifetime when stacked in a nick, gap or overhang region in duplex DNA. This is used to probe hybridization dynamics of a DNA hairpin down to the single-molecule level. We also show that varying the position of a single abasic site up to 20 base pairs away modulates the dye–DNA interaction, indicative of through-backbone allosteric interactions. The phenomenon of stacking-induced fluorescence increase (SIFI) should find widespread use in the study of the structure, dynamics and reactivity of nucleic acids
- …