5,294 research outputs found

    Quantum-dot-like states in molybdenum disulfide nanostructures due to the interplay of local surface wrinkling, strain, and dielectric confinement

    Full text link
    The observation of quantum light emission from atomically thin transition metal dichalcogenides has opened a new field of applications for these material systems. The corresponding excited charge-carrier localization has been linked to defects and strain, while open questions remain regarding the microscopic origin. We demonstrate that the bending rigidity of these materials leads to wrinkling of the two-dimensional layer. The resulting strain field facilitates strong carrier localization due to its pronounced influence on the band gap. Additionally, we consider charge carrier confinement due to local changes of the dielectric environment and show that both effects contribute to modified electronic states and optical properties. The interplay of surface wrinkling, strain-induced confinement, and local changes of the dielectric environment is demonstrated for the example of nanobubbles that form when monolayers are deposited on substrates or other two-dimensional materials

    Multiple Imputation Using Gaussian Copulas

    Get PDF
    Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this paper, we present a simple-to-use method for generating multiple imputations using a Gaussian copula. The Gaussian copula for multiple imputation (Hoff, 2007) allows scholars to attain estimation results that have good coverage and small bias. The use of copulas to model the dependence among variables will enable researchers to construct valid joint distributions of the data, even without knowledge of the actual underlying marginal distributions. Multiple imputations are then generated by drawing observations from the resulting posterior joint distribution and replacing the missing values. Using simulated and observational data from published social science research, we compare imputation via Gaussian copulas with two other widely used imputation methods: MICE and Amelia II. Our results suggest that the Gaussian copula approach has a slightly smaller bias, higher coverage rates, and narrower confidence intervals compared to the other methods. This is especially true when the variables with missing data are not normally distributed. These results, combined with theoretical guarantees and ease-of-use suggest that the approach examined provides an attractive alternative for applied researchers undertaking multiple imputations

    Simulation-Based Identification of Operating Point Range for a Novel Laser-Sintering Machine for Additive Manufacturing of Continuous Carbon-Fibre-Reinforced Polymer Parts

    Get PDF
    Additive manufacturing using continuous carbon-fibre-reinforced polymer (CCFRP) presents an opportunity to create high-strength parts suitable for aerospace, engineering, and other industries. Continuous fibres reinforce the load-bearing path, enhancing the mechanical properties of these parts. However, the existing additive manufacturing processes for CCFRP parts have numerous disadvantages. Resin- and extrusion-based processes require time-consuming and costly post-processing to remove the support structures, severely restricting the design flexibility. Additionally, the production of small batches demands considerable effort. In contrast, laser sintering has emerged as a promising alternative in industry. It enables the creation of robust parts without needing support structures, offering efficiency and cost-effectiveness in producing single units or small batches. Utilising an innovative laser-sintering machine equipped with automated continuous fibre integration, this study aims to merge the benefits of laser-sintering technology with the advantages of continuous fibres. The paper provides an outline, using a finite element model in COMSOL Multiphysics, for simulating and identifying an optimised operating point range for the automated integration of continuous fibres. The results demonstrate a remarkable reduction in processing time of 233% for the fibre integration and a reduction of 56% for the width and 44% for the depth of the heat-affected zone compared to the initial setup

    ViMA -- the spinning rotor gauge to measure the viscosity of tritium between 77 and 300 K

    Get PDF
    Experimental values for the viscosity of the radioactive hydrogen isotope tritium (T2_2) are currently unavailable in literature. The value of this material property over a wide temperature range is of interest for applications in the field of fusion, neutrino physics, as well as to test ab initio calculations. As a radioactive gas, tritium requires careful experiment design to ensure safe and environmental contamination free measurements. In this contribution, we present a spinning rotor gauge based, tritium compatible design of a gas viscosity measurement apparatus (ViMA) capable of covering the temperature range from 80 K to 300 K.Comment: 11 pages, 3 figures, Tritium Conference 202

    Asymmetric Surface Brightness Structure of Caustic Crossing Arc in SDSS J1226+2152: A Case for Dark Matter Substructure

    Full text link
    We study the highly magnified arc SGAS J122651.3+215220 caused by a star-forming galaxy at zs=2.93z_s=2.93 crossing the lensing caustic cast by the galaxy cluster SDSS J1226+2152 (zl=0.43z_l=0.43), using Hubble Space Telescope observations. We report in the arc several asymmetric surface brightness features whose angular separations are a fraction of an arcsecond from the lensing critical curve and appear to be highly but unequally magnified image pairs of underlying compact sources, with one brightest pair having clear asymmetry consistently across four filters. One explanation of unequal magnification is microlensing by intracluster stars, which induces independent flux variations in the images of individual or groups of source stars in the lensed galaxy. For a second possibility, intracluster dark matter subhalos invisible to telescopes effectively perturb lensing magnifications near the critical curve and give rise to persistently unequal image pairs. Our modeling suggests, at least for the most prominent identified image pair, that the microlensing hypothesis is in tension with the absence of notable asymmetry variation over a six-year baseline, while subhalos of 106\sim 10^6--108M10^8\,M_\odot anticipated from structure formation with Cold Dark Matter typically produce stationary and sizable asymmetries. We judge that observations at additional times and more precise lens models are necessary to stringently constrain temporal variability and robustly distinguish between the two explanations. The arc under this study is a scheduled target of a Director's Discretionary Early Release Science program of the James Webb Space Telescope, which will provide deep images and a high-resolution view with integral field spectroscopy.Comment: New version accepted by MNRAS; 18 pages including references and appendices, 13 figures and 4 tables; major revision of Sec. 3.2 and Figure 4 presenting improved data analysis; original conclusion strengthened

    Towards the first direct measurement of the dynamic viscosity of gaseous tritium at cryogenic temperatures

    Get PDF
    Accurate values for the viscosity of the radioactive hydrogen isotope tritium (T) at cryogenic temperatures are unavailable. Values for tritium found in literature are based on extrapolation by mass ratios as well as an empirical factor derived from hydrogen (H) and deuterium (D ) viscosity measurements, or classical kinetic theory which does not handle quantum effects. Accurate data of the tritium viscosity will help to improve the modelling of the viscosity of diatomic molecules and can be used as a test of their interaction potentials. With this contribution we report a major step towards a fully tritium and cryogenic temperature compatible setup for the accurate measurement of the viscosity of gases, using a spinning rotor gauge (SRG) at the Tritium Laboratory Karlsruhe. After calibration with helium, measurements with hydrogen and deuterium conducted at room temperature agree with literature values within 2%. The performance at liquid nitrogen (LN ) temperature has been successfully demonstrated with a second setup in a liquid nitrogen bath. Again after calibration with helium at LN temperature, the viscosities of H and D were determined and are in agreement with literature to about 2%
    corecore