6 research outputs found

    A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells

    Get PDF
    Although there is now evidence that the expression of centromeric (CT) and pericentric (PCT) sequences are key players in major genomic functions, their transcriptional status in human cells is still poorly known. The main reason for this lack of data is the complexity and high level of polymorphism of these repeated sequences, which hampers straightforward analyses by available transcriptomic approaches. Here a transcriptomic macro-array dedicated to the analysis of CT and PCT expression is developed and validated in heat-shocked (HS) HeLa cells. For the first time, the expression status of CT and PCT sequences is analyzed in a series of normal and cancer human cells and tissues demonstrating that they are repressed in all normal tissues except in the testis, where PCT transcripts are found. Moreover, PCT sequences are specifically expressed in HS cells in a Heat-Shock Factor 1 (HSF1)-dependent fashion, and we show here that another independent pathway, involving DNA hypo-methylation, can also trigger their expression. Interestingly, CT and PCT were found illegitimately expressed in somatic cancer samples, whereas PCT were repressed in testis cancer, suggesting that the expression of CT and PCT sequences may represent a good indicator of epigenetic deregulations occurring in response to environmental changes or in cell transformation

    De novo and long-term l-Dopa induce both common and distinct striatal gene profiles in the hemiparkinsonian rat.

    No full text
    International audienceWe compared for the first time the effects of de novo versus long-term l-Dopa treatment inducing abnormal involuntary movement on striatal gene profiles and related bio-associations in the 6-hydroxydopamine rat model of Parkinson's disease. We examined the pattern of striatal messenger RNA expression over 4854 genes in hemiparkinsonian rats treated acutely or chronically with l-Dopa, and subsequently verified some of the gene alterations by in situ hybridization or real-time quantitative PCR. We found that de novo and long-term l-Dopa share common gene regulation features involving phosphorylation, signal transduction, secretion, transcription, translation, homeostasis, exocytosis and synaptic transmission processes. We also found that the transcriptomic response is enhanced by long-term l-Dopa and that specific biological alterations are underlying abnormal motor behavior. Processes such as growth, synaptogenesis, neurogenesis and cell proliferation may be particularly relevant to the long-term action of l-Dopa
    corecore