31 research outputs found

    Predicting chemical environments of bacteria from receptor signaling

    Full text link
    Sensory systems have evolved to respond to input stimuli of certain statistical properties, and to reliably transmit this information through biochemical pathways. Hence, for an experimentally well-characterized sensory system, one ought to be able to extract valuable information about the statistics of the stimuli. Based on dose-response curves from in vivo fluorescence resonance energy transfer (FRET) experiments of the bacterial chemotaxis sensory system, we predict the chemical gradients chemotactic Escherichia coli cells typically encounter in their natural environment. To predict average gradients cells experience, we revaluate the phenomenological Weber's law and its generalizations to the Weber-Fechner law and fold-change detection. To obtain full distributions of gradients we use information theory and simulations, considering limitations of information transmission from both cell-external and internal noise. We identify broad distributions of exponential gradients, which lead to log-normal stimuli and maximal drift velocity. Our results thus provide a first step towards deciphering the chemical nature of complex, experimentally inaccessible cellular microenvironments, such as the human intestine.Comment: DG and GM contributed equally to this wor

    Role of NLRP3 in an experimental model of testicular ischemia and reperfusion in mice

    Get PDF
    Inflammasomes are multi-protein complexes composed of one of several leucinerich repeat receptors (NLRs) including NLRP1, NLRP3, NLRC4 and AIM2: NLRP3 is currently the most fully characterized inflammasome. Testicular torsion leads to tissue degeneration and, after reperfusion, results in production of reactive oxygen species and triggers the apoptosis machinery. To better understand the role of NLRP3 during testicular ischemia/reperfusion (TI/R), we investigated the morphological aspects of spermatogenesis underlying the effects of inflammasome in KO mice during TI/R. KO (Nlrp3tm1bhk) and wild-type (WT: C57Bl6) animals underwent 1h testicular-ischemia followed by reperfusion. The mice were killed after 1 day and 7 days of reperfusion and the determination of caspase-3 activity was executed. Furthermore, both the tubular (mean seminiferous tubule diameter and Johnsen’s scoring system [1]) and extratubular (edema, hemorrhagic extravasation, vessels dilation, and Leydig cells changes [2]) compartments were evaluated. The TUNEL assay for apoptosis was also performed. After 1 and 7 days of reperfusion in WT mice an increase of caspase-3 was observed. Structurally, marked histological damages characterized by altered spermatogenesis, evident extratubular changes and increased TUNEL activity were observed. In KO mice caspase-3 was inhibited. Histological damages were significantly decreased, TUNEL activity was reduced and extratubular changes were significantly milder. We suggest that NLRP3 inhibition might have a protective role on spermatogenesis and it can be proposed in patients with unilateral testicular torsion

    Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation

    Get PDF
    Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms

    Bacterial chemotaxis: from information processing to behaviour

    No full text
    Chemotaxis allows flagellated bacteria to navigate in complex chemical environments, following nutrients and escaping toxins. The sensory system made up of chemoreceptors is constantly monitoring the extracellular concentrations of nutrients and toxins, while the signalling pathway processes and transmits the external information to the flagellated motors for movement. In the case of Escherichia coli, the chemotaxis pathway has been extensively characterised experimentally using genetics, biochemistry, and a wide range of imaging tools. This makes E. coli an ideal model organism for quantitative analysis and modelling. Several remarkable properties of the E. coli chemotaxis pathway have been summarised in terms of design principles. However, the swimming behaviour remains poorly understood, even for genetically identical cells in the artificial conditions normally used in a laboratory. Here, I propose an interdisciplinary approach, which combines theory, computational simulations, and experimental data from my collaborators, to study E. coli chemotaxis from an information-theoretic point of view. I demonstrate that the E. coli chemotaxis pathway is designed to optimally transmit environmental information over a certain range of concentrations and gradients. To do so, I develop a theory that identifies both the responses and the environmental conditions that transmit maximal environmental in- formation. Interestingly, when maximal information is transmitted, the behaviour characterised in terms of the drift velocity towards the nutrient is also maximised. A new design principle is proposed: maximal information transmission leads to maximal drift. Furthermore, the energetic cost of chemotaxis is much lower than the energy consumed to maintain the biological signalling pathway. Hence, thermodynamics does not seem to set constraints on information transmission and drift. However, to fully capitalise on my results, a closer connection with single-cell experiments is suggested.Open Acces

    Maximal information transmission is compatible with ultrasensitive biological pathways

    No full text
    Cells are often considered input-output devices that maximize the transmission of information by converting extracellular stimuli (input) via signaling pathways (communication channel) to cell behavior (output). However, in biological systems outputs might feed back into inputs due to cell motility, and the biological channel can change by mutations during evolution. Here, we show that the conventional channel capacity obtained by optimizing the input distribution for a fixed channel may not reflect the global optimum. In a new approach we analytically identify both input distributions and input-output curves that optimally transmit information, given constraints from noise and the dynamic range of the channel. We find a universal optimal input distribution only depending on the input noise, and we generalize our formalism to multiple outputs (or inputs). Applying our formalism to Escherichia coli chemotaxis, we find that its pathway is compatible with optimal information transmission despite the ultrasensitive rotary motors.ISSN:2045-232

    Minorities drive growth resumption in cross-feeding microbial communities

    No full text
    Microbial communities are fundamental to life on Earth. Different strains within these communities are often connected by a highly connected metabolic network, where the growth of one strain depends on the metabolic activities of other community members. While distributed metabolic functions allow microbes to reduce costs and optimize metabolic pathways, they make them metabolically dependent. Here, we hypothesize that such dependencies can be detrimental in situations where the external conditions change rapidly, as they often do in natural environments. After a shift in external conditions, microbes need to remodel their metabolism, but they can only resume growth once partners on which they depend have also adapted to the new conditions. It is currently not well understood how microbial communities resolve this dilemma and how metabolic interactions are reestablished after an environmental shift. To address this question, we investigated the dynamical responses to environmental perturbation by microbial consortia with distributed anabolic functions. By measuring the regrowth times at the single-cell level in spatially structured communities, we found that metabolic dependencies lead to a growth delay after an environmental shift. However, a minority of cells-those in the immediate neighborhood of their metabolic partners-can regrow quickly and come to numerically dominate the community after the shift. The spatial arrangement of a microbial community is thus a key factor in determining the communities' ability to maintain metabolic interactions and growth in fluctuating conditions. Our results suggest that environmental fluctuations can limit the emergence of metabolic dependencies between microorganisms.ISSN:0027-8424ISSN:1091-649

    The Empirical Fluctuation Pattern of E. coli Division Control

    No full text
    In physics, it is customary to represent the fluctuations of a stochastic system at steady state in terms of linear response to small random perturbations. Previous work has shown that the same framework describes effectively the trade-off between cell-to-cell variability and correction in the control of cell division of single E. coli cells. However, previous analyses were motivated by specific models and limited to a subset of the measured variables. For example, most analyses neglected the role of growth rate variability. Here, we take a comprehensive approach and consider several sets of available data from both microcolonies and microfluidic devices in different growth conditions. We evaluate all the coupling coefficients between the three main measured variables (interdivision times, cell sizes and individual-cell growth rates). The linear-response framework correctly predicts consistency relations between a priori independent experimental measurements, which confirms its validity. Additionally, the couplings between the cell-specific growth rate and the other variables are typically non zero. Finally, we use the framework to detect signatures of mechanisms in experimental data involving growth rate fluctuations, finding that (1) noise-generating coupling between size and growth rate is a consequence of inter-generation growth rate correlations and (2) the correlation patterns agree with a near-adder model where the added size has a dependence on the single-cell growth rate. Our findings define relevant constraints that any theoretical description should reproduce, and will help future studies aiming to falsify some of the competing models of the cell cycle existing today in the literature

    Microbiota-derived metabolites inhibit Salmonella virulent subpopulation development by acting on single-cell behaviors

    No full text
    Salmonella spp. express Salmonella pathogenicity island 1 Type III Secretion System 1 (T3SS-1) genes to mediate the initial phase of interaction with their host. Prior studies indicate short-chain fatty acids, microbial metabolites at high concentrations in the gastrointestinal tract, limit population-level T3SS-1 gene expression. However, only a subset of Salmonella cells in a population express these genes, suggesting short-chain fatty acids could decrease T3SS-1 population-level expression by acting on per-cell expression or the proportion of expressing cells. Here, we combine single-cell, theoretical, and molecular approaches to address the effect of short-chain fatty acids on T3SS-1 expression. Our in vitro results show short-chain fatty acids do not repress T3SS-1 expression by individual cells. Rather, these compounds act to selectively slow the growth of T3SS-1-expressing cells, ultimately decreasing their frequency in the population. Further experiments indicate slowed growth arises from short-chain fatty acid-mediated depletion of the proton motive force. By influencing the T3SS-1 cell-type proportions, our findings imply gut microbial metabolites act on cooperation between the two cell types and ultimately influence Salmonella's capacity to establish within a host.ISSN:0027-8424ISSN:1091-649

    Two different cell-cycle processes determine the timing of cell division in Escherichia coli

    No full text
    International audienceCells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli , it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting

    Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment

    No full text
    Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as "spatial jackpot events") that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.ISSN:1751-7362ISSN:1751-737
    corecore