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Abstract
Cells sense external concentrations and, via biochemical signaling, respond by regulating

the expression of target proteins. Both in signaling networks and gene regulation there are

two main mechanisms by which the concentration can be encoded internally: amplitude

modulation (AM), where the absolute concentration of an internal signaling molecule en-

codes the stimulus, and frequency modulation (FM), where the period between successive

bursts represents the stimulus. Although both mechanisms have been observed in biologi-

cal systems, the question of when it is beneficial for cells to use either AM or FM is largely

unanswered. Here, we first consider a simple model for a single receptor (or ion channel),

which can either signal continuously whenever a ligand is bound, or produce a burst in sig-

naling molecule upon receptor binding. We find that bursty signaling is more accurate than

continuous signaling only for sufficiently fast dynamics. This suggests that modulation

based on bursts may be more common in signaling networks than in gene regulation. We

then extend our model to multiple receptors, where continuous and bursty signaling are

equivalent to AM and FM respectively, finding that AM is always more accurate. This implies

that the reason some cells use FM is related to factors other than accuracy, such as the

ability to coordinate expression of multiple genes or to implement threshold crossing

mechanisms.

Author Summary

Signals, and hence information, can generally be transmitted either by amplitude (AM) or
frequency (FM) modulation, as used, for example, in the transmission of radio waves since
the 1930s. Both types of modulation are known to play a role in biology with AM conven-
tionally associated with signaling and gene expression, and FM used to reliably transmit
electrical signals over large distances between neurons. Surprisingly, FM was recently also
observed in gene regulation, making their roles less distinct than previously thought. Al-
though the engineering advantages and disadvantages of AM and FM are well understood,
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the equivalent question in biological systems is still largely unsolved. Here, we propose a
simple model of signaling by receptors (or ion channels) with subsequent gene regulation,
thus implementing both AM and FM in different types of biological pathways. We then
compare the accuracy in the production of target proteins. We find that FM can be more
accurate than AM only for a single receptor with fast signaling, whereas AM is more accu-
rate in slow gene regulation and with signaling by multiple receptors. Finally, we propose
possible reasons that cells use FM despite the potential decrease in accuracy.

Introduction
Cells are exposed to changing environmental conditions and need to respond to external sti-
muli with high accuracy, e.g. to utilize nutrients and to avoid lethal stresses [1, 2]. To represent
(encode) chemicals in the environment, either ligand-bound receptors trigger chemical signals
or ion channels allow entry of secondary messengers. These in turn activate transcription fac-
tors (TFs), which then regulate target-protein production (decoding). In eukaryotic cells, the
conventional view is that the level of signaling within the cell directly encodes the external sti-
muli, with consequent gradual changes in the nuclear TF concentrations. This is effectively an
amplitude modulation (AM) mechanism [3–10]. However, recent single-cell experiments also
show pulsating signals [3, 11–14] and bursty entry of TFs into the nucleus [3, 10, 15–17], in
close analogy to frequency modulation (FM). (Note that, although there is no modulation of an
underlying carrier wave as in radio broadcasting [18], the AM/FM terminology is commonly
used in quantitative biology [10, 15].) Although several hypotheses have been put forward, the
benefits and detrimental effects of either type of response remain largely unclear.

There is experimental evidence that both types of modulation occur in gene regulation. For
example, take the budding yeast Saccharomyces cerevisiae. Under oxidative stress the nuclear
concentration of transcription factor Msn2 is proportional to the H2O2 concentration, suggest-
ing an AMmechanism (Fig 1A and 1B) [10]. However, in response to a calcium stimulus,
Crz1, which is normally cytoplasmic, enters the nucleus in unsynchronized bursts, regulating
at least a hundred target genes (Fig 1C) [15]. The level of stimulus affects only the frequency of
bursts, not their amplitude and duration, which implies FM (Fig 1D and inset) [15, 19]. Simi-
larly, Msn2 and its homologue Msn4 exhibit FM under glucose limitation [10]. Bursty FM is
also found in bacteria and mammals, indicating that this is a general modulation scheme across
different cell types. For example, during energy-depletion stress, the bacterium Bacillus subtilis
activates the alternative sigma factor σB in discrete stochastic pulses, regulating around 150
downstream genes [20]. In addition, isoform NFAT4 in activated T-cells shows similar behav-
ior [21].

What are the relative benefits of AM and FM? One important issue is the susceptibility to
noise, which affects the accuracy of sensing. For example, in broadcasting radio signals it is
well known that FM is less affected by noise than AM. This is because noise mainly deteriorates
the amplitude, which is where the information is stored in AM. A similar argument also favors
action potentials in communicating neuronal signals over long distances [22]. In contrast, it
has been hypothesized that for other cell types, such as yeast, the bursty nature of FM may in-
troduce more noise than AM, so that AMmight be preferable (Fig 2A and 2B) [15]. However,
two recent articles (which we discuss below) disagree with this and suggest that FM may still be
more accurate [23, 24]. In addition, it is important to remember that there are often other fac-
tors than noise minimization. For example, it has been suggested that, in situations where
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multiple genes need to be up or down regulated, FM can provide greater coordination and reli-
ability (Fig 2C and 2D) [15, 19].

Mora and Wingreen considered a model for a single receptor embedded in a cell membrane
and compared the noise in the output for two signaling mechanisms: continuous (CM) and
bursty (BM) modulation [23]. In CM, the receptor signals continuously whenever a ligand is
bound, whereas in BM the receptor signals for a short, fixed-sized burst only upon binding of a
ligand. As we explain below, for multiple receptors these mechanisms become equivalent to

Fig 1. Experimental evidence for amplitude and frequency modulation. (A and B) Example data showing amplitude modulation from [10]. (A) Single-cell
nuclear localization of Msn2 transcription factor in response to H2O2 stress as a function of time. The stimulus profile (input) is a step change applied at t = 0
(inset) which applies to all figure panels. (B) Average time trace for different concentrations of H2O2 stress. (C and D) Example data showing frequency
modulation from [15]. (C) Single-cell nuclear localization of Crz1 in response to calcium stress as a function of time, showing bursts of Crz1. (D) The average
frequency of bursts against calcium concentration, showing an increased frequency with increased concentration. (Inset) Burst duration distribution for low
(blue bars) and high (red bars) concentration. Both histograms are well described by the Gamma distribution hðtÞ ¼ te�t=tb , with τb = 70s (black solid line),
demonstrating that pulse duration is independent of calcium concentration. Experimental data in arbitrary units (AU) of fluorescence.

doi:10.1371/journal.pcbi.1004222.g001
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AM and FM, respectively. By considering integral feedback control, a common network for
sensing concentration ramps and precise adaptation [25–27], it was found that, for fast binding
and unbinding, the noise in CM can be twice that from BM, suggesting that FM leads to greater
accuracy. Despite this unexpected result, there are two key points that need further clarifica-
tion. First, the response was only calculated to lowest order in the small-ramp parameter, thus
neglecting any time dependence of the noise. Second, the derivation solely relied on the small-
noise approximation, which might work well for fast signaling, but could be inadequate for
slow gene regulation.

Similarly, Tostevin et al. found biologically relevant parameter regimes of promoter switch-
ing in gene regulation in which an oscillating input can produce a more constant and hence

Fig 2. Advantages and disadvantages of amplitude and frequencymodulation. AMmay be less noisy than FM (A,B), but FMmay allow coordinated
expression of many genes (C,D) [15, 19]. (A) In AM, low/high stimuli result in low/high levels of transcription factor (TF) inside the nucleus. (B) In AM, different
nuclear TF concentrations (blue and red curves) lead to gene expression of proteins A and B (see orange and green promoter functions respectively) with
variable ratios (order of dot and square changes). (C) In FM, the stimulus strength only affects the frequency of bursts, not their amplitude. (Inset) Schematic
of TF (purple dots) binding promoter PA of gene A (orange) and promoter PB of gene B (green) with different binding strengths. (D) In FM, the nuclear TF
concentration is always the same during a burst, only the frequency of occurrence changes. As a consequence, the protein ratio stays constant.

doi:10.1371/journal.pcbi.1004222.g002
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less noisy protein output level than a constant input with noise [24]. Although interesting, this
model is restricted to decoding and linear pathways, and requires fine-tuning. Its general appli-
cability remains unclear, such as whether an oscillatory input signal can be replaced by random
bursts and still remain more accurate than a constant input. In fact, oscillating signals are well-
known to maximize target responsiveness while bypassing desensitization from constant sig-
nals [28]. They also globally entrain with its period robust to noise [29]. Such oscillators are
found in circadian clocks, segmentation clocks, cell cycle, p53 DNA repair pathways, as well as
nuclear factor NF-κB, epidermal growth factor ERK, cAMP and Ca2+ signaling [17, 30–39].
This leaves the question of the relative benefits of AM and FM (with respect to random bursts)
largely unanswered.

Here, we aim to investigate the advantages and disadvantages of CM and BM (AM and FM)
for encoding and decoding of constant concentrations and ramps. To build intuition, we start
with a single receptor/ion channel (CM and BM). We consider concentration sensing by a line-
ar pathway, allowing us to gain exact results for different temporal regimes (as suitable for fast
signaling and slow gene regulation). To provide analytical results, we extend the single-receptor
model for ramp sensing by Mora and Wingreen. First, we introduce an alternative mechanism
to integral feedback, the incoherent feedforward loop (another common pathway motif for
ramp sensing and precise adaptation [40–42]). This allows us to generalize the model to more
than one pathway. Second, by explicitly including the time-dependence of signaling noise, we
are able to provide first-order analytical results for the accuracy of ramp sensing. Taken togeth-
er, a general principle emerges, favoring BM for fast signaling and CM for slow gene regulation.
Finally, we generalize to many receptors and ion channels, a far more realistic situation for bio-
logical systems, allowing us to make connection with AM and FM. While we found that AM is
generally more accurate than FM, we speculate why cells may still utilize FM in certain cases of
gene regulation.

Results
Cells sense external stimuli with cell-surface receptors and/or ion channels, which ultimately lead
to changes in the concentration and dynamics of active transcription factors (TFs) inside the nu-
cleus. Cells control the response at two different levels. Firstly, cell-surface receptors signal to reg-
ulate the activity of TFs in the cytoplasm. Secondly, inportin and exportin regulate the entry of
active TFs into the nucleus, thereby regulating transcription (Fig 3A). Here, we build a theoretical
model that encodes information from an extra-cellular environment in an intra-cellular repre-
sentation. We distinguish two ways of encoding this information: continuous modulation (CM)
and bursty modulation (BM). Once the information is encoded, various proteins can act together
to implement a response (decoding), involving regulatory networks. To provide a general analysis
for arbitrary noise we first address concentration sensing in a simple linear pathway using the
master equation. However, to derive analytical results for ramp sensing and pathways with feed-
back we apply the small-noise approximation. We finally extend these models to implement am-
plitude (AM) and frequency modulation (FM) for many receptors or ion channels. Accuracy is
assessed by comparing the protein output noise for the different modulation schemes, assuming
that the signal is decoded by the average concentration.

Single-receptor/ion-channel model
Following Mora and Wingreen [23] we build a single-receptor model that implements CM and
BM. We call the extra-cellular species c, which is encoded intra-cellularly by the signaling rate
u. Assuming we are in the fast diffusion regime in which each ligand molecule can bind the
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receptor only once, the receptor can be in either of two uncorrelated states: on when bound
and off when unbound. This allows the receptor activity, r(t), to be written mathematically as a
binary response, which takes value 1 in the on state and 0 in the off state. The extra-cellular
concentration c affects the unbound time intervals τu, such that the binding rate is given by
hτui−1 = k+ c(t), where k+ is the binding rate constant. In contrast, the bound time intervals, τb,
are exponentially distributed random numbers with average hτbi−1 = k−, where k− is the un-
binding rate constant, which is independent of the extra-cellular stimulus concentration (inset

Fig 3. Schematic view of signaling and gene regulation. (A) Cartoon of S. cerevisiae in presence of
extracellular calcium, considered a paradigm of bursty frequency modulation. Calcium enters through
plasma-membrane ion channels and can be stored (released) in (from) vacuoles. Intracellular calcium
activates calcineurin, which dephosphorylates Crz1p. Once dephosphorylated, Crz1 binds inporting Nmd5p
and enters the nucleus. Exportin Msn5p subsequently removes Crz1 from the nucleus. Cytoplasmic calcium
pulses may correspond to Crz1 bursts in the nucleus [15]. Red arrows indicate movement while blue arrows
stand for chemical signaling. (B) Single receptor/ion channel activity, r(t) (blue line), depends on the
concentration of extra-cellular stimulus c. The signaling rate u differs between continuous (CM) and bursty
modulation (BM). In CM, u is constant rate α during bound intervals, with pb the probability of being bound. In
BM, ζmolecules are realized at the time of binding with τbursts the duration between consecutive bursts
(binding events). (C) Different regulatory networks. Linear pathway used for concentration sensing.
Incoherent feedforward loop and integral feedback control allow chemical ramps to be sensed.

doi:10.1371/journal.pcbi.1004222.g003
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in Fig 3A). As for ion channels, some are ligand-gated or regulated by receptors, while others
are voltage-gated and hence dependent on action potentials [43]. In all these cases the stimulus
affects the opening or closing times. In CM downstream proteins are produced with a constant
rate α during each on time interval, which leads to a signaling rate uCM = αr(t), while in BM
z ¼ ak�1

� molecules are produced instantly at the moment of binding with rate
uBM ¼ z

P
dðt � tþi Þ, where tþi are the binding times (Fig 3B). This choice for z allows a mean-

ingful comparison of CM and BM as both produce, on average, the same amount of
intracellular species.

General approach to concentration sensing exhibits two regimes of
accuracy
In order to provide a general result for arbitrary input fluctuations, we write down the chemical
master equation. For simplicity, we only consider concentration sensing with c(t) = c0, but the
model can also be applied to ramps. Furthermore, we assume a linear pathway in which the re-
ceptor/ion channel activity r directly regulates an output species with copy number n (with
production rate u and degradation rate γ) (Fig 3C, left). Since the receptor/ion channel activity
is a two-state system (on/off), there are two resulting master equations for CM (one for each
state) describing the probability of being in the on and off states, i.e. pon(n, t) and poff(n, t):

dponðn; tÞ
dt

¼ gðnþ 1Þponðnþ 1; tÞ þ aponðn� 1; tÞ þ kþcpoffðn; tÞ � ðgnþ aþ k�Þponðn; tÞ; ð1aÞ

dpoffðn; tÞ
dt

¼ gðnþ 1Þpoffðnþ 1; tÞ þ k�ponðn; tÞ � ðgnþ kþcÞpoffðn; tÞ: ð1bÞ

Note that α� k−, so molecules are generally produced in the on state. In BM, instead, the mas-
ter equations which describe the probabilities pon(n, t) and poff(n, t) of having n proteins at
time t, are given respectively by

dponðn; tÞ
dt

¼ gðnþ 1Þponðnþ 1; tÞ þ kþcpoffðn� z; tÞ � ðgnþ k�Þponðn; tÞ; ð2aÞ

dpoffðn; tÞ
dt

¼ gðnþ 1Þpoffðnþ 1; tÞ þ k�ponðn; tÞ � ðgnþ kþcÞpoffðn; tÞ; ð2bÞ

with burst size z a positive integer. We solve Eqs (1a) and (1b) with generating functions and
simulate Eqs (2a) and (2b) with the Gillespie algorithm (see Materials and Methods).

Simulations via the Gillespie algorithm show different outcomes for fast (small-noise ap-
proximation limit, Fig 4A and 4B) and slow (Fig 4C and 4D) dynamics of the receptor. For fast
switching (k+ c0, k−� γ), for both CM and BM, the probability has an unimodal distribution
(Fig 4B). On the other hand, in the slow switching regime (k+ c, k−� γ), the probability distri-
bution becomes bimodal for CM and unimodal with a long tail for BM, leading to drastically
increased noise (Fig 4D). The unimodal distribution for BM, which is simply due to the use of
infinitely short pulses, would become bimodal for finite width pulses.

In order to classify the different dynamics and to compare CM and BM for arbitrary noise,
we require information on the probability distribution of n output proteins. In particular, we
study the average, variance and skewness (the latter is encoded in the third moment) of the dis-
tribution for both CM and BM. Constraining the average output of CM and BM to be the same
(Fig 5A and 5B), we identify two regimes for fast dynamics: k+ c0 < k− (Fig 5C) and k+ c0 > k−
(Fig 5D). Specifically, for k+ c0 < k−, BM is more accurate (Fig 5C, inset), while CM is generally
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more accurate when k+ c0 > k− (Fig 5D, inset), except for minimal burst size (z = 1). However,
for slow dynamics (and hence large noise), CM is always more accurate than BM. The study of
the third moment shows that, for slow switching and hence bimodality, BM has large asymme-
try (Fig 5E and 5F).

These observations can be explained as follows, using the fact that the receptor/ion channel
can only detect information from the extra-cellular environment during unbound (off) time in-
tervals, as the extra-cellular stimulus only affects the binding rate (Fig 3). For fast dynamics,
the two regimes can be understood by comparison with maximum-likelihood estimation
(MLE), the most accurate strategy for encoding [44]. MLE estimates the ligand concentration

cML ¼ k�1
þ htui�1 from the average unbound time interval hτui. The bound time intervals are dis-

carded as they only contribute noise [44]. BM, which produces fixed-size bursts at the times of
binding, approaches MLE when the bound intervals are shorter than the unbound intervals. In

Fig 4. The two regimes in the linear pathwaymodel based on the master equation. (A-B) fast (k+ c0 =
20s−1, k

−

= 100s−1, γ = 0.1s−1, α = 100s−1, ζ = 1) and (C-D) slow (k+ c0 = 0.01s−1, k
−

= 0.05s−1, γ = 1s−1, α =
25s−1, ζ = 500) switching. (A,C) Protein number as a function of time from Gillespie simulations for CM (blue
lines) and BM (red lines). (B) The probability distribution for n target proteins is unimodal for both AM (blue)
and FM (red). (D) The probability distribution is bimodal for AM (blue) and remains unimodal for BM (red) but
with a long tail in the slow switching regime.

doi:10.1371/journal.pcbi.1004222.g004
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this case, the times of the bursts effectively estimate the unbound time intervals (Fig 3B, bot-
tom) and BM is more accurate than CM. However, when the bound intervals are longer than
the unbound intervals, BM cannot estimate the unbound time intervals anymore and becomes
less accurate than CM. Since CM produces protein during the bound intervals, it signals ac-
cording to the average receptor activity pb = hτbi/(hτbi+hτui) (Fig 3B, top). Hence, CM effec-
tively contains information on both bound and unbound intervals, and thus can still provide a

Fig 5. First three moments of the protein distribution in concentration sensing from themaster equation. Averages (A,B), variance (C,D), and
skewness (E,F) as a function of the frequency of binding events, f = k+ c0/(1+k+ c0/k−). (Insets) Magnification of small-noise approximation region (fast
switching). Analytical results for CM (blue) and numerical results for BM (red) as function of the frequency of binding events (logarithmic scale). Two regimes
are shown: k

−

= 10 k+ c0 (α = 100s−1, γ = 1s−1, ζ from 1000 to 1) (left column) and k
−

= 0.1 k+ c0 (α = 10s−1, γ = 1s−1, ζ from 1000 to 1) (right column). Averages
from CM and BM are constrained to be equal, i.e. ζ ¼ ak�1

� . Variances of CM and BM exhibit two different regimes for fast switching: for k+ c0 < k
−

BM is more
accurate than CM (inset in C), while for k+ c0 > k

−

CM is generally more accurate (inset in D), except for ζ = 1. Third moments show that, for large noise, the
probability distributions become asymmetric.

doi:10.1371/journal.pcbi.1004222.g005
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reasonable estimate of unbound time intervals. An interesting exception is ak�1
� ¼ z ¼ 1, for

which BM becomes slightly more accurate than CM. In the latter case, since the rate of protein
production during a bound interval in CM is very low, there is uncertainty as to whether CM
actually produces protein or not, which reduces its accuracy. In contrast, for slow switching the
burst size needs to increase since BM produces the same level of protein as CM. Hence, BM is
always less accurate than CM, independent of whether bound or unbound time intervals are
longer. While we analytically demonstrate the connection with MLE for fast dynamics in the
next section, an extended discussion without comparison to MLE can be found in S1 Text and
S1–S3 Figs.

Small-noise approximation to ramp sensing confirms two regimes for
fast dynamics
To further investigate fast dynamics, we extend an analytical model for ramp sensing in the
small-noise approximation [23]. Considering the single-receptor described in Fig 3A and 3B,
we linearize the system by averaging over a time much larger than the binding and unbinding

times. We further assume exponential distributions for τb and τu so that hðdtbÞ2i ¼ htbi2 ¼ k�2
�

and h(δτu)2i = hτui2 = (k+ c(t))
−2, where c(t) increases only very slowly with time (see below).

Hence, signaling noise arises in CM due to variable bound time intervals (ignoring stochastic
production of protein during bound intervals), while in BM the binding times (bursting times)
vary. Without loss of generality, we set α = k−, which is equivalent to z = 1. Hence, as we show
in S1 Text, for averaging time much longer than k�1

� and (k+ c(t))
−1, the average and autocorre-

lation (variance) of u(t) are given by [23]

huðtÞi ¼ kþcðtÞ
1þ kþcðtÞ=k�

; ð3Þ

hduðtÞduðt0Þi ¼ g
kþcðtÞ

ð1þ kþcðtÞ=k�Þ3
dð t � t0Þ; ð4Þ

with hδu(t)i = 0 and

g ¼
(
1þ hðdtbÞ2i=htbi2 ¼ 2 CM

1þ hðdtbÞ2i=hðdtuÞ2i ¼ 1þ ½kþcðtÞ=k��2 BM:
ð5Þ

Note that only the variance differs between CM and BM. In particular, in Eq (5) the ratio k+ c
(t)/k− determines whether g is larger in BM or CM, which ultimately determines which scheme
leads to the least noise. BM has the lower noise only when k+ c(t)< k−, i.e. when hτbi< hτui. In
particular, in the limit of fast unbinding (k+ c(t)� k−), the signaling noise for CM is twice as
large as for BM.

Sensing temporal ramps, i.e. the change of concentration with time, is crucial for locating
nutrients and avoiding toxins. We start by considering a stimulus whose concentration is con-
stant for t< 0 and increases linearly and slowly in time after t = 0:

cðtÞ ¼
(
c0 t < 0

c0 þ c1t t � 0;
ð6Þ
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for constants c0 and c1 with c1 t� c0. By applying Eq (6) to Eqs (3–5), the signaling rate can be
rewritten to first order as

uðtÞ ’
(
u0 þ u1t þ du t � 0

u0 þ du t < 0;
ð7Þ

where u0, u1 are functions of c0 and c1, and δu is the noise described by hδu(t)δu(t0)i (given in
S1 Text). The condition c1 t� c0 is necessary so that u behaves linearly in time with u1 t� u0.
Under this condition, the factor gBM of Eq (5) becomes

gBM ’ 1þ k2þc
2
0

k2�|fflfflfflffl{zfflfflfflffl}
g�
BM

þ 2k2þc0c1
k2�

t; ð8Þ

where gBM is given by g�BM for a constant external concentration. We now assume that the
extra-cellular stimulus is encoded in the signaling rate u which affects the production of two
output proteins with concentrations x and y. Specifically, we compare the output noise of x and
y between CM and BM using the incoherent feedforward (Fig 3C, middle) and integral feed-
back (Fig 3C, right) loops.

Incoherent feedforward loop. The incoherent feedforward loop is a network motif in
which u directly affects two outputs x and y, while y inhibits x (Fig 3C, middle). The loop pro-
vides precise adaptation to a step-change in stimulus and can also be used for ramp sensing.
Mathematically, we use the following two coupled stochastic differential equations,

dx
dt

¼ kx
f ðuÞ
gðyÞ � x

� �
; ð9Þ

dy
dt

¼ u� kyy; ð10Þ

where kx is the rate constant for production and degradation of x, while ky is the rate constant
for degradation of y, and f(u) and g(y) are specified functions. In order to have adaptation the
variable y needs to evolve slower than x, which requires kx > ky. Here we choose f(u) = ebu and
g(y) = ebky y, where constant b has units of time. This allows us to obtain an analytic solution
(see S1 Text for details).

Integral feedback loop. The integral feedback loop [23] is another network motif for pre-
cise adaptation and ramp sensing. Here, u affects x only (the main output), while x activates y
and y inhibits x (Fig 3C, right). The general equations for this model are given by

dx
dt

¼ uf ðyÞ � kxx; ð11Þ

dy
dt

¼ ky x � 1ð Þ; ð12Þ

where kx is the rate constant for degradation of x, ky is the rate constant for production and
degradation of y satisfying kx > ky, and f(y) is a monotonically decreasing function of y. Specifi-
cally, we choose f(y) = e−by, where b is a dimensionless constant. This again produces an analyt-
ic solution (see S1 Text for details).

Small-noise approximation. To analytically solve Eqs (9) and (10) for the incoherent
feedforward loop, and Eqs (11) and (12) for the integral feedback loop, we linearize these
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equations within the small-noise approximation, and assume that we are in the fast-switching
regime. This allows us to find analytic solutions in a particular time window and under certain
conditions which we define in S1 Text. Specifically, for the incoherent feedforward loop in the
small-ramp regime, the average values of hu(t)i, hx(t)i and hy(t)i are determined by the differ-
ential equations Eqs (9 and 10). Although there are no steady states for ramps, hx(t)i and hy(t)i
show time-dependent stable solutions

hxðtÞi ¼ e

bu1

ky ;
ð13aÞ

hyðtÞi ¼ u0

ky
� u1

k2y
þ u1t

ky
: ð13bÞ

Introducing x = hxi + δx and y = hyi + δy into Eqs (9) and (10) with subsequent linearization
the variance of the target-protein copy numbers can be derived (see Materials and Methods).
To first order in small-ramp parameters the variances of x for both types of modulation are

hðdxðtÞÞ2iCM ¼ D gCMu0 �
1� 2c0kþ=k�

kx þ ky
u1 þ gCMð1� 2kþc0=k�Þu1t

" #
; ð14aÞ

hðdxðtÞÞ2iBM ¼ D g�BMu0 �
1� 2c0kþ=k� þ 3c20k

2
þ=k

2
�

2ky
u1 þ 1� 2kþc0=k� þ 3k2þc

2
0=k

2
�

� �
u1t

" #
; ð14bÞ

where D ¼ b2k2xe

2bu1
ky

2ðkxþkyÞð1þkþc0=k�Þ2
, and gCM and g�BM are parameters discussed in Eqs (5) and (8). The

corresponding results for species y are provided in Eqs. (S56) and (S58), and plots for species x
and y are shown in Fig 6B and 6D.

Consistent with the master equation, these results show again two regimes: ramp sensing is
more accurate for BM if k+ c0 < k−, while CM is more accurate otherwise. For a constant envi-
ronment (zeroth-order with c1 = u1 = 0) the regime is largely determined by the factor g. If k+
c0 < k−, gBM = 1+h(δτb)2i/hδ(τu)2i< 2 (see Eq (5)), and BM is more accurate than CM with
gCM = 1+h(δτb)2i/hτbi2 = 2 (Fig 6A and 6B). This is because the variability of the bound inter-
vals h(δτb)2i can be eliminated in BM (but not in CM), and the unbound intervals are well ap-
proximated by the duration between bursts (τbursts in Fig 3). For k+ c0 � k−, BM effectively
implements MLE. In contrast, CM is more accurate for k+ c0 > k−, where gCM = 2 and gBM > 2
(Fig 6C and 6D). This is because BM contains no information on unbound time intervals,
while CM still contains some information through the probability of being bound (pb in Fig
3B). These results also apply to ramp sensing since the accuracy of the downstream proteins
(decoding) relates again to the factor g and hence to the ratio between the bound and unbound
time intervals. The integral feedback loop in Eqs (11) and (12) shows very similar behavior
(provided in S1 Text). The validity of our analytical results are confirmed by simulations of the
stochastic differential equation for both pathways in S4 and S5 Figs.

AM is more accurate than FM for multiple receptors/ion channels
To address the question of whether AM or FM is more accurate in encoding and decoding, we
consider a straightforward generalization to multiple receptors (or ion channels) (see S1 Text
and S6 Fig. for details). AM can be obtained by considering unsynchronized CM receptors. In
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contrast, the experimentally observed sporadic bursts of nuclear translocation [10, 23] and
hence FMmight be explained by synchronized receptors that individually operate with BM.

For N unsynchronized (us) receptors, the resulting average and variance of the signaling
rate are huðtÞiusN ¼ NhuðtÞi1 and hduðtÞduðt0ÞiusN ¼ NhduðtÞduðt0Þi1 in terms of the single-re-
ceptor quantities. Consequently, the relative variance, given by the variance divided by the av-
erage-squared, scales with the inverse of the number of receptors (N). On the other hand, for N
synchronized (s) receptors, the average and variance of the signaling rate are given respectively
by huðtÞisN ¼ NhuðtÞi1 and hduðtÞduðt0ÞisN ¼ N2hduðtÞduðt0Þi1. The relative variance is now in-
dependent of N. Hence, unsynchronized receptors (AM) have a reduction of noise by a factor
N compared to synchronized receptors (FM).

For slow dynamics, or fast dynamics with k+ c> k−, CM is generally more accurate than
BM (at least for z> 1), and with N receptors, AM is more accurate than FM by an even larger
margin. In contrast, for fast dynamics with k+ c< k−, BM is more accurate than CM by at most

Fig 6. Two regimes in incoherent feedforward loop based on the small-noise approximation.Output
noise, i.e. relative variance of x (top) and y (bottom), as function of the non-dimensional ramp time u1 t/u0 for
k+ c0 < k

−

i.e. hτbi < hτui (left) and k+ c0 > k
−

i.e. hτbi > hτui (right). CM and BM are shown by blue and red lines
respectively. (A,B) BM is more accurate than AM for k+ c0 = 107 s−1 and k

−

= 6.7 × 107 s−1. (C,D) CM is more
accurate then BM for k+ c0 = 107 s−1 and k

−

= 6.7 × 106 s−1. Remaining parameters: k+ c1 = 105 s−2, kx = 5s−1

and ky = 10s−1.

doi:10.1371/journal.pcbi.1004222.g006
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a factor of 2 (Eq (5)). But since AM is N times more accurate than CM, AM becomes more ac-
curate for encoding than FM for more than two receptors. Since our results from the previous
sections show that larger signaling noise leads to larger output noise, the same rule emerges
for decoding.

From a physical point of view, how can receptors act in a synchronized fashion? Receptors
may be coupled by adaptor proteins or elastic membrane deformations, allowing them to act
cooperatively [45, 46]. In conclusion, while for fast dynamics (small-noise approximation) BM
can be more accurate than CM up to a factor of two, two receptors/ion channels are sufficient
for AM to become more accurate than FM. Since cells have thousands of receptors and ion
channels, AM becomes the most accurate modulation scheme.

Discussion
Cellular responses to extra-cellular stimuli involve both encoding the external stimuli by inter-
nal signals (which is normally fast) and subsequently decoding via the regulation of protein lev-
els (which is normally much slower). The internal representation of the external signal falls
into two broad categories: continuous/amplitude modulation (CM/AM), where bound recep-
tors continually signal and the internal concentration itself encodes the external signal, and
bursty/frequency modulation (BM/FM), where receptors only signal when first bound and the
signal is encoded in the frequency of peaks. Here, we compared the output noise for both types
of modulation in the presence of a constant and a linearly increasing (in time) external concen-
tration. Besides considering a linear pathway, we compared two nonlinear network motifs: the
incoherent feedforward loop and the integral feedback loop. These loops are ubiquitous in bio-
logical systems. For example, the incoherent feedforward loop is found in chemotactic adapta-
tion of eukaryotes [40] and transcription networks in bacteria [41], and the integral feedback
loop is found in chemotactic adaptation of bacteria [25, 47] and in eukaryotic olfactory and
phototransduction pathways [27].

We found that, for a single receptor or ion channel, BM can be more accurate than CM for
fast dynamics. This situation can occur when the average duration of the active on state is
shorter than the average duration of the inactive off state (Figs 5 and 6). In this case, BM effec-
tively implements maximum-likelihood estimation, the most accurate mechanism of sensing
[44]. If instead more time is spent in the on state, then CM is generally more accurate (except
when the burst size is minimal, i.e one). The reason behind this effect, which we analytically
prove within the small-noise approximation, is that CM has information about both the on
and off states, whereas BM only knows when a switch from off to on occurs. As such, CM effec-
tively implements Berg and Purcell’s classic result of estimating ligand concentration by time
averaging [48] (see also Discussion in [44]). In addition, we found that for slow dynamics CM
is always more accurate than BM, independent of whether more time is spent in the on or off
states, due to increased burst sizes (Fig 5). Taken together our results suggest that BM should
be more common in signaling pathways than in gene regulation.

The generalization to multiple receptors/ion channels allows AM and FM to be compared.
AM, which arises from unsynchronized CM receptors, has a reduced relative noise due to spa-
tial averaging, while the relative noise in FM from synchronized BM receptors remains identi-
cal to the single-receptor result. (Note the observed nuclear bursts of approximately constant
amplitude and duration support our FMmechanism [10, 15].) As a result, AM is always more
accurate than FM for more than two receptors (S6 Fig). Since cells have tens of thousands of re-
ceptors and ion channels, this implies that the reason that FM is sometimes observed in real
systems must have a different origin. At least three possibilities present themselves. Firstly, FM
can help to coordinate gene expression [15, 19], which is particularly useful when hundreds of
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genes are controlled by a single transcription factor, such as during stress response [49–51].
Secondly, FM can enhance co-localization of proteins inside the nucleus, providing another
way to improve coordination of gene expression [52]. Thirdly, as with oscillatory signals, bursts
can be used to activate transcription by threshold crossing [32] while avoiding desensitization
[28]. This may then push the cell to differentiate into a new state (such as under starvation to
initiate competence) [53, 54]. It is also worth noting that by using seemingly redundant iso-
forms (such as NFAT1 and NFAT4 during an immune response), AM and FM can be com-
bined to enhance temporal information processing [21].

While providing intuitive insights, it is clear that our models are highly oversimplified ver-
sions of signaling and gene regulation in actual cells. One of the main reasons for this is that we
used idealized delta-functions as pulses in BM (and hence in FM). However, for example, in
the calcium stress-response pathway in Saccharomyces cerevisiae (Fig 3A) nuclear bursts of
Crz1p are on average two minutes long (Fig 1D, inset). Most likely cytoplasmic calcium spikes
determine the nuclear bursts (Elowitz, personal communication), but since the mechanism of
calcium spiking remains poorly understood, such bursts are difficult to model. A further limita-
tion of our models is that bursts only relate to translocation, whereas additional bursts may
occur further downstream during transcription [55] (e.g. due to promoter switching [24]) and
translation [56]. Future models may need to include these details.

Our models suggest further experimental investigation in multiple areas. Firstly, the distri-
bution of burst duration affects factor g (Eq (5)), so that g = 2 in equilibrium for a single-step
process and potentially g< 2 for an irreversible binding cycle dominated by energy dissipation
[23, 57]. These irreversible cycles are present in some ligand-gated ion channels, such as the
cystic fibrosis transmembrane conductance regulator (CFTR) channels and N-Methyl-D-as-
partate (NMDA) receptors. These exhibit peaked opening distributions, which can be inter-
preted as evidence of broken reversibility and energy consumption [58, 59]. Such cases and
their possible connection with accuracy need further investigation. In fact, most cellular pro-
cesses rely heavily on energy consumption, including nuclear shuttling and chromosome re-
modeling, limiting the applicability of our equilibrium CM-receptor model. Secondly,
coordination of gene expression during stress or cell-fate decisions might be another reason for
implementing FM rather than AM. More quantitative experiments are needed to better under-
stand this mechanism. Thirdly, closer inspection of Ca2+-independent transcription factors (as
well as Ca2+-dependent co-regulated genes) are warranted in order to verify coordination of
multiple genes [15]. Finally, to see if bursts help jump start new cellular programs (i.e. transi-
tion into a new “attractor”), global changes in gene regulation can be monitored.

A general understanding of FMmay help prevent developmental defects and human dis-
eases. Indeed, several biomedically relevant transcription factors, such as NF-κB, p53, NFAT
and ERK, show oscillatory pulsing or random bursting [16, 17, 33–36, 54]. In fact, the destabili-
zation of regulatory circuits can underlie human diseases: studies suggest that the coordination
of gene expression could be critical in maintaining the proper functioning of key nodes in such
circuits. For example, the NFATc circuit is cooperatively destabilized by a 1.5-fold increase in
the DSCR1 and DYRK1A genes, which reduce NFATc activity leading to characteristics of
Down’s syndrome [16, 60]. However, ERK pulses are regulated by both AM and FM with the
same dose dependence, and it remains unclear how they affect cell proliferation and the rele-
vance to cancer [36].

Broadly speaking, temporal ordering (regularity or periodicity) serves at least two roles in
living systems [61]: extraction of energy from the environment and handling of information.
While the first role is well studied in terms of molecular motors at the single-molecule level,
the second role is intellectually more difficult to understand as it requires a broader, more
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global understanding of cells. We believe that future work that combines single-cell experi-
ments with ideas of collective behavior and engineering principles is most likely to
be successful.

Materials and Methods

Master-equation model for concentration sensing
The master equations for continuous modulation (CM), Eqs (1a) and (1b), can be solved at
steady state using generating functions. In particular, we derive the first three moments of the
probability distribution using the general model in [62]. When the system is in the on/off state,
the production rate of species x is αon/off. The degradation rate γ is independent of the state of
the system. The probability distribution of n target proteins at time t is then described by

dpsðn; tÞ
dt

¼ gðnþ 1Þpsðnþ 1; tÞ þ aspsðn� 1; tÞ þ k�sp�sðn; tÞ � ðgnþ as þ ksÞpsðn; tÞ; ð15Þ

where �s ¼ offðonÞ when s = on (off). By defining the generating functions

GsðzÞ ¼
X1
n¼0

psðnÞzn; ð16Þ

and using Eq (15), a solution for Gs(z) can be found, which then readily gives the moments of p
(n, t). In particular, the variance and skewness are given by

hdn2i ¼
X

s

ð@zz@zGsðzÞÞjz¼1 � hni2; ð17Þ

hn3i ¼
X

s

½@zz@zz@zGsðzÞ�jz¼1: ð18Þ

Full details are given in S1 Text.
In order to solve the master equation for bursty modulation (BM), Eqs (2a) and (2b), we use

the Gillespie algorithm [63]. If the system is in the on state with n proteins at time t, it can ei-
ther switch to the off state with transition rate given by k−/(k−+γn) or else remain in the on
state and lose a protein by degradation. If instead the system is in the off state with n proteins
at time t, it can either switch to the on state with switching rate k+ c0/(k+ c0+γn) and, via a
burst, increase its number of proteins to n + z, or again remain in the same state and loose a
protein by degradation. The time step between reactions, δt, is chosen from an exponential
probability distribution λe−λδt, with λ equal to the total rate that at least one reaction occurs.

ODEmodels for ramp sensing
The following method applies to both the incoherent feedforward and the integral feedback
loop. To solve the ordinary differential Eqs (9–12) we linearize around stable solutions, x(t) =
hx(t)i + δx and y(t) = hy(t)i + δy, and assume that small δu leads to small δx and δy. Note that
when sensing a gradually changing ramp, hx(t)i and hy(t)i are not steady states. Defining X =
[x(t)y(t)]T we can rewrite these equations as

dXðtÞ
dt

þMXðtÞ ¼
w du

z du

" #
; ð19Þ

where the matrixM and the constants w and z are defined in S1 Text. Analytic solutions are
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only available whenM is time-independent. As shown in S1 Text, Eq (19) can be solved and
written as an integral, which can then be evaluated with, for example, WolframMathematica 8.

Supporting Information
S1 Text. Details of analytical calculations.
(PDF)

S1 Fig. First three moments of the protein distribution in concentration sensing from the
master equation. Averages (A,B), variance (C,D), and skewness (E,F) as a function of the fre-
quency of binding events, f = k+ c0/(1+k+ c0/k−). (Insets) Magnification of small-noise approxi-
mation region (fast switching). Analytical results for CM (blue) and numerical results for BM
(red) and intermediate modulation IM (green) as function of the frequency of binding events
(logarithmic scale). Note that this figure is similar to Fig 5 in main text with the addition of IM.
Two regimes are shown: k− = 10 k+ c0 (α = 100s−1, γ = 1s−1, z from 1000 to 1) (left column) and
k− = 0.1 k+ c0 (α = 10s−1, γ = 1s−1, z from 1000 to 1) (right column). Averages from CM, BM
and IM are constrained to be equal, i.e. z (BM)¼ ak�1

� (CM) = α0 τb (IM). Variances of CM,
BM and IM exhibit two different regimes for fast switching: for k+ c0 < k− BM is the most accu-
rate mechanism and CM the worst (inset in C) while for k+ c0 > k− CM is generally the most
accurate (except for z = 1) and IM the worst (inset in D). Third moments show that, for large
noise, the probability distributions become asymmetric.
(EPS)

S2 Fig. Examples of time traces of receptor activity and protein copy numbers for different
regimes. (Top) Regime k+ c0 < k− with k+ c = 0.1 k− (α = 100s−1, γ = 1s−1). (Bottom) Regime k+
c0 > k− with k+ c = 10 k− (α = 10s−1, γ = 1s−1). (Left) Slow switching with z = 400. (Right) Fast
switching with z = 7. Receptor activity r and protein copy numbers n(t) for CM, BM and IM
are shown in black, blue, red and green, respectively.
(EPS)

S3 Fig. Investigating accuracy based on accumulative signaling (without protein produc-
tion and degradation). (A) Regime k+ c0 < k− with k+ c = 0.1 k− (α = 100s−1, γ = 1s−1 and z =
7). (Left) ODE model. (Right) Stochastic protein production during τb in CM and IM. (Top)
Examples of time traces. (Bottom) Histograms of number of proteins produced after 100s with
standard deviation in legend based on 1000 simulations. (B) Analogous to (A) but for regime
k+ c> k− with k+ c = 10 k− (α = 100s−1, γ = 1s−1 and z = 7). CM, BM and IM are shown in blue,
red and green, respectively.
(EPS)

S4 Fig. Incoherent feedforward loop: Comparison of analytical results with simulations of
the stochastic differential equations. (A) Averages of signaling rate u (left), species y from
Eq. (S42) (middle) and species x from (S41) (right) as a function of time. Analytic solutions
Eqs. (S32), (S43) and (12) are shown for BM in red, while a (time averaged) time-trace from a
stochastic simulation using the Euler method is shown in orange (CM is almost identical and
hence is not shown). (B) Corresponding variances as a function of time for k+ c0 > k− (k− =
6.7 × 105 s−1, k+ c0 = 106 s−1). Analytic results are shown in blue for CM and in red for BM; av-
erage over time (1s) from numerical simulations are shown in light blue for CM and in orange
for BM. (C) Corresponding variances as a function of time for k+ c0 < k− (k− = 6.7 × 106 s−1, k+
c0 = 106 s−1). Colors same as in (B). Remaining parameters: k+ c1 = 104 s−2, kx = 10s−1 and ky =
50s−1.
(EPS)
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S5 Fig. Integral feedback loop: Comparison of analytical results with simulations of the sto-
chastic differential equations. (A) Averages of signaling rate u (left), species y from Eq. (S60)
(middle) and species x from (S59) (right) as a function of time. Analytic solutions Eqs. (S32),
(S66) and (S65) are shown for BM in red, while a (time averaged) time-trace from a stochastic
simulation using the Euler method is shown in orange (CM is almost identical and hence is not
shown). (B) Corresponding variances as a function of time for k+ c0 > k− (k− = 6.7 × 105 s−1, k+
c0 = 106 s−1). Analytic results are shown in blue for CM and in red for BM; numerical simula-
tions are shown in light blue for CM and in orange for BM. (C) Corresponding variances as a
function of time for k+ c0 < k− (k− = 6.7 × 106 s−1, k+ c0 = 106 s−1). Colors same as in (B). Re-
maining parameters: k+ c1 = 104 s−2, kx = 10s−1 and ky = 50s−1.
(EPS)

S6 Fig. From CM (BM) to AM (FM) for multiple receptors/ion channels. (A-D) Schematic
of receptor activity in time. (A) AM emerges from N unsynchronized receptors or ion channels
in CMmode. (B) N synchronized CM receptors lead to a hybrid mechanism with information
encoded in the frequency of broad bursts of variable duration. (C) N unsynchronized BM re-
ceptors provide a dense series of bursts. For large N, bursts may start overlapping, leading to
variable amplitudes. (D) FM emerges from N synchronized receptors in BMmode. (E) Relative
variance for a system of 8 receptors with ρN synchronized and (1−ρ)N unsynchronized recep-
tors, plotted for fast dynamics in the k+ c< k− regime (CM in blue and BM in red). Letters
refer to panel labels (A-D). Dotted red line indicates uncertainty from FM for comparison.
(Inset) Same for a system of two receptors only.
(PDF)
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