53 research outputs found

    The Geoscience of Climate and Energy 1. Understanding the Climate System, and the Consequences of Climate Change for the Exploitation and Management of Natural Resources: The View from Banff

    Get PDF
    A commonly expressed opinion within the earth-science community is that the work of the Intergovernmental Panel on Climate Change (IPCC) has largely ignored paleoclimate data and the methods of research utilized by earth scientists. It can be demonstrated that this is not the case, and one of the objectives of the Gussow–Nuna conference was to present current research in this area. Whereas earth scientists might seem ideally placed to address issues of climate change and energy, many of the beliefs that inform public opinion about global warming and climate change are based on misrepresentations or over-simplifications. Six examples are discussed here, including mis-perceptions about the melting and retreat of glaciers, the true causes of concern about the future fate of polar bears, and myths about petroleum pricing and availability. There is ample space for the earth-science community to add its informed voice to debates about energy and climate change, but, to date, this voice appears to be have been largely ineffective. RÉSUMÉ Dans le milieu des sciences de la Terre on a souvent l’opinion que les travaux du Groupe d'experts intergouverne-mental sur l'Ă©volution du climat (GIEC) ont largement ignorĂ© les donnĂ©es et les mĂ©thodes de recherche palĂ©oclimatiques employĂ©es par les gĂ©oscientiques. On peut prouver que ce n’est pas le cas, et que c’était un des objectifs de la ConfĂ©rence Gussow− Nuna que de prĂ©senter les recherches actuelles en la matiĂšre. Bien qu’il semble que les gĂ©oscientifiques soient les mieux placĂ©s pour traiter de questions de changement climatique et d’énergie, de nombreuses croyances qui modĂšlent l’opinion publique sur le rĂ©chauffement global et le changement climatique reposent sur des informations trompeuses ou des simplifications excessives. Six exemples seront discutĂ©es ci-dessous, dont les perceptions erronĂ©es sur la fonte et le retrait des glaciers, les vĂ©ritables motifs d’inquiĂ©tude sur le sort des ours blancs, et la saga des prix et de la disponibilitĂ© du pĂ©trole. Nombreux sont les forums oĂč les gĂ©oscientifiques peuvent faire entendre leur voix compĂ©tentes dans les dĂ©bats sur l’énergie et le changement climatique, mais il semble que cela ait Ă©tĂ© sans grand effet jusqu’à maintenant

    A Phanerozoic Time Chart for Canada

    Get PDF

    Geoscience of Climate and Energy 10. The Alberta Oil Sands: Developing a New Regime of Environmental Management, 2010–2013

    Get PDF
        DOI: http://dx.doi.org/10.12789/geocanj.2013.40.01

    The Geoscience of Climate and Energy: An Introduction

    Get PDF

    Geoscience of Climate and Energy 13. The Environmental Hydrogeology of the Oil Sands, Lower Athabasca Area, Alberta

    Get PDF
    Shallow fresh groundwater and deep saline groundwater are used together with surface water in the extraction of bitumen from the Athabasca Oil Sands both in the surface mining and in situ operations. However, increasing efficiencies in processing technologies have reduced water use substantially and currently at least 75% of the water used in most operations is recycled water. Much concern has been expressed regarding contamination of surface waters by seepage from tailings ponds, but hydrogeological studies indicate that this is not happening; that seepage capture design is effective. Oil sands mining and in situ project licensing and operation regulations include Environmental Impact Assessments that mandate considerable hydrogeological measurement and monitoring work. However, little of this is independently evaluated for accuracy or synthesized and interpreted for the public. Recent changes in Alberta environmental regulation, including the establishment of the Alberta Environmental Monitoring Management Board (in October 2012) are expected to bring new transparency to environmental management of Oil Sands operations.SOMMAIREOn utilise conjointement des eaux douce de faibles profondeur, des eaux souterraines salines profondes avec des eaux de surface dans l'extraction du bitume des sables bitumineux de l'Athabasca, tant dans le procĂ©dĂ© d’extraction in situ qu’en surface.  Par ailleurs, l’accroissement de l'efficacitĂ© des technologies de traitement a considĂ©rablement rĂ©duit la consommation d'eau et, Ă  l’heure actuelle, au moins 75% de l'eau utilisĂ©e dans la majoritĂ© des opĂ©rations est de l'eau recyclĂ©e.  Beaucoup d’inquiĂ©tude a Ă©tĂ© exprimĂ©e concernant la contamination des eaux de surface par la percolation des eaux des bassins de dĂ©cantation des rĂ©sidus, mais des Ă©tudes hydrogĂ©ologiques indiquent que ce n'est pas le cas, et que le concept de capture des infiltrations est efficace.  L’octroi de permis d’exploitation ainsi que les procĂ©dĂ©s d’exploitation des sables bitumineux, par extraction en surface ou in situ, comportent des Ă©valuations d’impact sur les milieux de vie, est assorti de mandats Ă©laborĂ©s de mesures hydrologiques et de suivi.  Cela dit, peu de ces mesures sont Ă©valuĂ©es de maniĂšre indĂ©pendante quant Ă  leur exactitude, leur mise en forme et leur interprĂ©tation pour le grand public.  Les changements rĂ©cents dans la rĂ©glementation environnementale en Alberta, y compris la mise en place du Alberta Environmental Monitoring Management Board (en Octobre 2012) devraient aboutir Ă  une nouvelle transparence de la gestion environnementale de l'exploitation des sables bitumineux.DOI: http://dx.doi.org/10.12789/geocanj.2013.40.01

    Environmental Management of the Alberta Oil Sands: Introduction to the Special Set of Articles

    Get PDF
         DOI: http://dx.doi.org/10.12789/geocanj.2013.40.01

    Logan Medallist 3. Making Stratigraphy Respectable: From Stamp Collecting to Astronomical Calibration

    Get PDF
    The modern science of stratigraphy is founded on a nineteenth-century empirical base – the lithostratigraphy and biostratigraphy of basin-fill successions. This stratigraphic record comprises the most complete data set available for reconstructing the tectonic and climatic history of Earth. However, it has taken two hundred years of evolution of concepts and methods for the science to evolve from what Ernest Rutherford scornfully termed “stamp collecting” to a modern dynamic science characterized by an array of refined methods for documenting geological rates and processes.    Major developments in the evolution of the science of stratigraphy include the growth of an ever-more precise geological time scale, the birth of sedimentology and basin-analysis methods, the influence of plate tectonics and, most importantly, the development, since the late 1970s, of the concepts of sequence stratigraphy. Refinements in these concepts have required the integration of all pre-existing data and methods into a modern, multidisciplinary approach, as exemplified by the current drive to apply the retrodicted history of Earth’s orbital behaviour to the construction of a high-precision ‘astrochronological’ time scale back to at least the Mesozoic record.    At its core, stratigraphy, like much of geology, is a field-based science. The field context of a stratigraphic sample or succession remains the most important starting point for any advanced mapping, analytical or modeling work.RÉSUMÉLa science moderne de la stratigraphie repose sur une base empirique du XIXe siĂšcle, soit la lithostratigraphie et la biostratigraphie de successions de remplissage de bassins sĂ©dimentaires.  Cette archive stratigraphique est constituĂ©e de la base de donnĂ©es la plus complĂšte permettant de reconstituer l’histoire tectonique et climatique de la Terre.  Cela dit, il aura fallu deux cents ans d’évolution des concepts et des mĂ©thodes pour que cette activitĂ© passe de l’état de « timbromanie », comme disait dĂ©daigneusement Ernest Rutherford, Ă  l’état de science moderne dynamique caractĂ©risĂ©e par sa panoplie de mĂ©thodes permettant de documenter les rythmes et processus gĂ©ologiques.   Les principaux dĂ©veloppements de l’évolution de la science de la stratigraphie proviennent de l’élaboration d’une Ă©chelle gĂ©ologique toujours plus prĂ©cise, l’avĂšnement de la sĂ©dimentologie et des mĂ©thodes d’analyse des bassins, de l’influence de la tectonique des plaques et, surtout du dĂ©veloppement depuis la fin des annĂ©es 1970, des concepts de stratigraphie sĂ©quentielle.  Des raffinements dans ces concepts ont nĂ©cessitĂ© l'intĂ©gration de toutes les donnĂ©es et mĂ©thodes existantes dans une approche moderne, multidisciplinaire, comme le montre ce mouvement actuel qui entend utiliser la reconstitution de l’histoire du comportement orbital de la Terre pour l’élaboration d’une Ă©chelle temporelle « astrochronologique » de haute prĂ©cision, remontant jusqu’au MĂ©sozoĂŻque au moins.     Comme pour la gĂ©ologie, la stratigraphie est une science de terrain.  Le contexte de terrain d’un Ă©chantillon stratigraphique ou d’une succession demeure le point de dĂ©part le plus important, pour tout travail sĂ©rieux de cartographie, d’analyse ou de modĂ©lisation

    The quick and the dead: when reaction beats intention

    Get PDF
    Everyday behaviour involves a trade-off between planned actions and reaction to environmental events.Evidence from neurophysiology, neurology and functional brain imaging suggests different neural bases for the control of different movement types. Here we develop a behavioural paradigm to test movement dynamics for intentional versus reaction movements and provide evidence for a ‘reactive advantage’ in movement execution, whereby the same action is executed faster in reaction to an opponent. We placed pairs of participants in competition with each other to make a series of button presses. Within subject analysis of movement times revealed a 10 per cent benefit for reactive actions. This was maintained when opponents performed dissimilar actions, and when participants competed against a computer, suggesting that the effect is not related to facilitation produced by action observation. Rather, faster ballistic movements may be a general property of reactive motor control, potentially providing a useful means of promoting survival

    The predictive mirror: interactions of mirror and affordance processes during action observation

    Get PDF
    An important question for the study of social interactions is how the motor actions of others are represented. Research has demonstrated that simply watching someone perform an action activates a similar motor representation in oneself. Key issues include (1) the automaticity of such processes, and (2) the role object affordances play in establishing motor representations of others’ actions. Participants were asked to move a lever to the left or right to respond to the grip width of a hand moving across a workspace. Stimulus-response compatibility effects were modulated by two task-irrelevant aspects of the visual stimulus: the observed reach direction and the match between hand-grasp and the affordance evoked by an incidentally presented visual object. These findings demonstrate that the observation of another person’s actions automatically evokes sophisticated motor representations that reflect the relationship between actions and objects even when an action is not directed towards an object
    • 

    corecore