5 research outputs found
A New Type of Ambiguity in the Planet and Binary Interpretations of Central Perturbations of High-Magnification Gravitational Microlensing Events
High-magnification microlensing events provide an important channel to detect
planets. Perturbations near the peak of a high-magnification event can be
produced either by a planet or a binary companion. It is known that central
perturbations induced by both types of companions can be generally
distinguished due to the basically different magnification pattern around
caustics. In this paper, we present a case of central perturbations for which
it is difficult to distinguish the planetary and binary interpretations. The
peak of a lensing light curve affected by this perturbation appears to be blunt
and flat. For a planetary case, this perturbation occurs when the source
trajectory passes the negative perturbation region behind the back end of an
arrowhead-shaped central caustic. For a binary case, a similar perturbation
occurs for a source trajectory passing through the negative perturbation region
between two cusps of an astroid-shaped caustic. We demonstrate the degeneracy
for 2 high-magnification events of OGLE-2011-BLG-0526 and
OGLE-2011-BLG-0950/MOA-2011-BLG-336. For OGLE-2011-BLG-0526, the
difference between the planetary and binary model is 3, implying that
the degeneracy is very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the
stellar binary model is formally excluded with 105 and the
planetary model is preferred. However, it is difficult to claim a planet
discovery because systematic residuals of data from the planetary model are
larger than the difference between the planetary and binary models. Considering
that 2 events observed during a single season suffer from such a degeneracy, it
is expected that central perturbations experiencing this type of degeneracy is
common.Comment: 8 pages, 8 figure
MOA-2010-BLG-523: “Failed planet” = RS CVn star
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an Amax ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge
MICROLENSING DISCOVERY OF A POPULATION OF VERY TIGHT, VERY LOW MASS BINARY BROWN DWARFS
Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M☉ and 0.034 M☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ∼0.02 M☉. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries
MOA-2010-BLG-523: “FAILED PLANET” = RS CVn STAR
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an Amax ∼ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge
MOA-2010-BLG-311: A PLANETARY CANDIDATE BELOW THE THRESHOLD OF RELIABLE DETECTION
We analyze MOA-2010-BLG-311, a high magnification (Amax > 600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a two-body lens model and find that the two-body lens model is a better fit but with only Δχ2 ∼ 80. The preferred mass ratio between the lens star and its companion is q = 10−3.7 ± 0.1, placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question