29,934 research outputs found

    Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance

    Full text link
    We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1 intercombination transition at 689 nm. Significant changes in dynamics are caused by modifications of scattering length by up to +- ?10a_bg, where the background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes in scattering length are monitored through changes in the size of the condensate after a time-of-flight measurement. Because the background scattering length is close to zero, blue detuning of the OFR laser with respect to a photoassociative resonance leads to increased interaction energy and a faster condensate expansion, whereas red detuning triggers a collapse of the condensate. The results are modeled with the time-dependent nonlinear Gross-Pitaevskii equation.Comment: 5 pages, 3 figure

    Phase reconstruction of strong-field excited systems by transient-absorption spectroscopy

    Full text link
    We study the evolution of a V-type three-level system, whose two resonances are coherently excited and coupled by two ultrashort laser pump and probe pulses, separated by a varying time delay. We relate the quantum dynamics of the excited multi-level system to the absorption spectrum of the transmitted probe pulse. In particular, by analyzing the quantum evolution of the system, we interpret how atomic phases are differently encoded in the time-delay-dependent spectral absorption profiles when the pump pulse either precedes or follows the probe pulse. We experimentally apply this scheme to atomic Rb, whose fine-structure-split 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{1/2} and 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{3/2} transitions are driven by the combined action of a pump pulse of variable intensity and a delayed probe pulse. The provided understanding of the relationship between quantum phases and absorption spectra represents an important step towards full time-dependent phase reconstruction (quantum holography) of bound-state wave-packets in strong-field light-matter interactions with atoms, molecules and solids.Comment: 5 pages, 4 figure

    A systematic study on the binding energy of Λ\Lambda hypernuclei

    Full text link
    In this paper, we calculated the binding energy per baryon of the Λ\Lambda hypernuclei systemically, using the relativistic mean field theory (RMF) in a statistic frame. Some resemble properties are found among most of the hypernuclei found in experiments. The data show that a Λ\Lambda hypernucleus will be more stable, if it is composed of a Λ\Lambda hyperon adding to a stable normal nuclear core, or a Λ\Lambda hyperon replacing a neutron in a stable normal nuclear core. According to our calculations, existences of some new Λ\Lambda hypernuclei are predicted under the frame of RMF.Comment: 8 pages, 6 figures, 3 table

    Conceptual-level evaluation of a variable stiffness skin for a morphing wing leading edge

    Get PDF
    A morphing leading edge produces a continuous aerodynamic surface that has no gaps between the moving and fixed parts. The continuous seamless shape has the potential to reduce drag, compared to conventional devices, such as slats that produce a discrete aerofoil shape change. However, the morphing leading edge has to achieve the required target shape by deforming from the baseline shape under the aerodynamic loads. In this paper, a conceptual-level method is proposed to evaluate the morphing leading edge structure. The feasibility of the skin design is validated by checking the failure index of the composite when the morphing leading edge undergoes the shape change. The stiffness of the morphing leading edge skin is spatially varied using variable lamina angles, and comparisons to the skin with constant stiffness are made to highlight its potential to reduce the actuation forces. The structural analysis is performed using a two-level structural optimisation scheme. The first level optimisation is applied to find the optimised structural proper- ties of the leading edge skin and the associated actuation forces. The structural properties of the skin are given as a stiffness distribution, which is controlled by a B spline interpolation function. In the second level, the design solution of the skin is investigated. The skin is assumed to be made of variable stiffness composite. The stack sequence of the composite is optimised element-by-element to match the target stiffness. A failure criterion is employed to obtain the failure index when the leading edge is actuated from the baseline shape to the target shape. Test cases are given to demonstrate that the optimisation scheme is able to provide the stiffness distribution of the leading edge skin and the actuation forces can be reduced by using a spatially variable stiffness skin

    Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1)

    Full text link
    We present energy filtered electron emission spectromicroscopy with spatial and wave-vector resolution on few layer epitaxial graphene on SiC$(000-1) grown by furnace annealing. Low energy electron microscopy shows that more than 80% of the sample is covered by 2-3 graphene layers. C1s spectromicroscopy provides an independent measurement of the graphene thickness distribution map. The work function, measured by photoelectron emission microscopy (PEEM), varies across the surface from 4.34 to 4.50eV according to both the graphene thickness and the graphene-SiC interface chemical state. At least two SiC surface chemical states (i.e., two different SiC surface structures) are present at the graphene/SiC interface. Charge transfer occurs at each graphene/SiC interface. K-space PEEM gives 3D maps of the k_|| pi - pi* band dispersion in micron scale regions show that the Dirac point shifts as a function of graphene thickness. Novel Bragg diffraction of the Dirac cones via the superlattice formed by the commensurately rotated graphene sheets is observed. The experiments underline the importance of lateral and spectroscopic resolution on the scale of future electronic devices in order to precisely characterize the transport properties and band alignments

    Rabdomiólise como manifestação de uma doença metabólica: relato de caso

    Get PDF
    Rhabdomyolysis is a process of muscle destruction that can present with varying clinical manifestations. In pediatric patients, its main etiology is infectious diseases. We present a previously healthy adolescent who was admitted to our emergency department with a four-day history of myalgia, muscle weakness and dark urine. At presentation, she was dehydrated. Blood analysis revealed acute renal failure and increased muscular enzymes. She was transferred to our pediatric intensive care unit. Medical therapies for correction of dehydration and the ionic and metabolic consequences of renal failure were performed. Due to oliguria, renal replacement therapy was initiated. An etiological investigation revealed a beta-oxidation defect. Metabolic diseases are a known cause of rhabdomyolysis. Muscular destruction should be diagnosed early in order to avoid its potential consequences. Generally, the treatment of rhabdomyolysis is conservative, although in some situations, a more invasive approach is needed.info:eu-repo/semantics/publishedVersio

    Inactive or moderately active human promoters are enriched for inter-individual epialleles

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China)

    Full text link
    © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This study evaluated the geographically weighted regression (GWR) model for landslide susceptibility mapping in Xing Guo County, China. In this study, 16 conditioning factors, such as slope, aspect, altitude, topographic wetness index, stream power index, sediment transport index, soil, lithology, normalized difference vegetation index (NDVI), landuse, rainfall, distance to road, distance to river, distance to fault, plan curvature, and profile curvature, were analyzed. Chi-square feature selection method was adopted to compare the significance of each factor with landslide occurence. The GWR model was compared with two well-known models, namely, logistic regression (LR) and support vcector machine (SVM). Results of chi-square feature selection indicated that lithology and slope are the most influencial factors, whereas SPI was found statistically insignificant. Four landslide susceptibility maps were generated by GWR, SGD-LR, SGD-SVM, and SVM models. The GWR model exhibited the highest performance in terms of success rate and prediction accuracy, with values of 0.789 and 0.819, respectively. The SVM model exhibited slightly lower AUC values than that of the GWR model. Validation result of the four models indicates that GWR is a better model than other widely used models
    • …
    corecore