421 research outputs found

    Mapping the charge carrier density in semiconductors by THz-QCL based optical feedback interferometry

    Get PDF
    A THz imaging system based on self-mixing (SM)interferometry in a Quantum Cascade Laser (QCL) is developed to map the distribution of free charges on a semiconductor surface. In the experiment, a free electron plasma is photo-generated in a high resistivity n-type silicon wafer using a near-infrared (NIR)continuous-wave (CW) pump laser. A model based on Drude theory correctly reproduces the experimental results and in prospective promises a quantitative evaluation of the free charges density

    Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling

    No full text
    Gold clusters embedded in glass are expected to be hard to dissolve in the form of ions since gold is essentially a nonreactive metal. In spite of that, bleaching of Au-doped nanocomposite sol-gel glass film on a soda-lime glass substrate is demonstrated in which electric-field thermal poling is employed to effectively dissolve randomly distributed gold nanoparticles (15 nm in diameter) embedded in a low conductivity sol-gel glass film with a volume filling factor as small as 2.3%. The surface plasmon absorption band at 520 nm is suppressed in the region covered by the anodic electrode. The phenomenon is explained by the ionization of the gold nanoparticles and the redistribution of gold ions in the glass matrix due to the action of the extremely high electrostatic field locally developed during poling

    Third-order nonlinear optical properties of bismuth-borate glasses measured by conventional and thermally managed eclipse Z scan

    No full text
    Third-order nonlinearity one order of magnitude larger than silica is measured in bismuth-borate glasses presenting a fast response (<200 fs). The results for the sign and magnitude of the nonlinearity were obtained using a combination of the eclipse Z scan with thermal nonlinearity managed Z scan, whereas the Kerr shutter technique was employed to obtain the electronic time response of the nonlinearity, all performed with 76 MHz repetition rate 150 fs pulses at 800 nm. Conventional Z scans in the picosecond regime at 532 and 1064 nm were also independently performed, yielding the values of the third-order nonlinear susceptibilities at those wavelengths. The results obtained for the femtosecond response, enhanced third-order nonlinearity of this glass (with respect to silica), place this glass system as an important tool in the development of photonics devices. Electro-optical modulators, optical switches, and frequency converters are some of the applications using second-order nonlinear properties of the Bi-glass based on the rectification model

    Therapeutic Strategies in Pulmonary Arterial Hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a serious and life-threatening condition for which the prognosis remains poor. Treatment options include endothelial receptor antagonists, phosphodiesterase (PDE5) inhibitors and prostanoids. Despite all demonstrating good short-term efficacy, none of the currently available drug therapies are curative. Treatment with prostanoids is complex and requires careful monitoring and management through a specialist centre. Furthermore, clinical efficacy is dependent on adequate up-titration of the drug. Treatment should be individualised and modified according to clinical response, with the addition of other therapies if required. The importance of monitoring and modifying therapeutic regimes is discussed. There appears to be reluctance among patients and physicians to employ prostanoid therapy, though an aggressive first-line therapy may be appropriate in advanced cases

    Optomechanical response with nanometer resolution in the self-mixing signal of a terahertz quantum cascade laser

    Get PDF
    Owing to their intrinsic stability against optical feedback (OF), quantum cascade lasers (QCLs) represent a uniquely versatile source to further improve self-mixing interferometry at mid-infrared and terahertz (THz) frequencies. Here, we show the feasibility of detecting with nanometer precision, the deeply subwavelength (<λ/6000 \lt \lambda /6000 <λ/6000) mechanical vibrations of a suspended Si3N4 {{\rm Si}_3}{{\rm N}_4} Si3N4 membrane used as the external element of a THz QCL feedback interferometer. Besides representing an extension of the applicability of vibrometric characterization at THz frequencies, our system can be exploited for the realization of optomechanical applications, such as dynamical switching between different OF regimes and a still-lacking THz master-slave configuration

    Optical limiting behavior of bismuth oxide-based glass in the visible range

    No full text
    The authors report experimental results on the optical limiting behavior of a bismuth oxide-based glass by exciting the samples with nanosecond laser pulses at 532 and 598 nm. The results show that two-photon and free-carrier absorption processes contribute for the nonlinear absorption. Values for β, the two-photon absorption coefficient, and σe, the absorption cross section due to free carriers, were determined. The values for β and σe are dependent on the amount of bismuth oxide in the glass composition

    Convexal subarachnoid hemorrhage and acute ischemic stroke: a border zone matter?

    Get PDF
    Background Convexal subarachnoid hemorrhage (c-SAH) is an infrequent condition with variable causes. c-SAH concomitant to acute ischemic stroke (AIS) is even less frequent, and the relationship between the two conditions remains unclear. Methods Between January 2016 and January 2018, we treated four patients who were referred to our stroke unit with ischemic stroke and concomitant nontraumatic c-SAH. The patients underwent an extensive diagnostic workup, including digital subtraction angiography (DSA). Results All four patients developed acute focal neurological symptoms with restricted MRI diffusion in congruent areas. In three of the patients, infarcts were in a border zone between the main cerebral arteries and c-SAH was nearby. The fourth patient showed a small cortical infarct, and c-SAH was in a border zone territory of the contralateral hemisphere. An embolic source was discovered or strongly suspected in all cases. One patient was treated with intravenous thrombolysis, but this treatment was not related to c-SAH. None of the four patients showed microbleeds or further cortical siderosis, thus excluding cerebral amyloid angiopathy. In addition, DSA did not show signs of vasculitis, reversible cerebral vasoconstriction syndrome, or intracranial arterial dissection. Conclusions We proposed the embolism or hemodynamic changes of the border zone arterioles as a unifying pathogenetic hypothesis of coexisting c-SAH and AIS

    Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision

    Get PDF
    In this retrospective compendium, we attempt to draw a “fil rouge” along fifteen years of our research in the field of optical feedback interferometry aimed at guiding the readers to the verge of new developments in the field. The general reader will be moved at appreciating the versatility and the still largely uncovered potential of the optical feedback interferometry, for both sensing and imaging applications. By discovering the broad range of available wavelengths (0.4–120 μm), the different types of suitable semiconductor lasers (Fabry–Perot, distributed feedback, vertical-cavity, quantum-cascade), and a number of unconventional tenders in multi-axis displacement, ablation front progression, self-referenced measurements, multispectral, structured light feedback imaging and compressive sensing, the specialist also could find inspirational suggestions to expand his field of research
    corecore