12 research outputs found

    Departures from isotropy: the kinematics of a larval snail in response to food

    Get PDF
    Author Posting. © Company of Biologists, 2020. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 224(2), (2020): jeb.239178, https://doi.org/10.1242/jeb.239178.The swimming behavior of invertebrate larvae can affect their dispersal, survival and settlement in the ocean. Modeling this behavior accurately poses unique challenges as behavior is controlled by both physiology and environmental cues. Some larvae use cilia to both swim and create feeding currents, resulting in potential trade-offs between the two functions. Food availability is naturally patchy and often occurs in shallow horizontal layers in the ocean. Also, larval swimming motions generally differ in the horizontal and vertical directions. In order to investigate behavioral response to food by ciliated larvae, we measured their behavioral anisotropy by quantifying deviations from a model based on isotropic diffusion. We hypothesized that larvae would increase horizontal swimming and decrease vertical swimming after encountering food, which could lead to aggregation at food layers. We considered Crepidula fornicata larvae, which are specifically of interest as they exhibit unsteady and variable swimming behaviors that are difficult to categorize. We tracked the larvae in still water with and without food, with a portion of the larvae starved beforehand. On average, larvae in the presence of food were observed higher in the water column, with higher swimming speeds and higher horizontal swimming velocities when compared with larvae without food. Starved larvae also exhibited higher vertical velocities in food, suggesting no aggregation behavior. Although most treatments showed strong anisotropy in larval behavior, we found that starved larvae without food exhibited approximately isotropic kinematics, indicating that behavioral anisotropy can vary with environmental history and conditions to enhance foraging success or mitigate food-poor environments.M.H.D. and K.S.M.-K. were supported by postdoctoral scholarships from Woods Hole Oceanographic Institution, and B.T. was supported by a WHOI Summer Student Fellowship. This work was also supported by National Science Foundation grant OCE-0850419

    Shipwreck ecology:Understanding the function and processes from microbes to megafauna

    Get PDF
    An estimated three million shipwrecks exist worldwide and are recognized as cultural resources and foci of archaeological investigations. Shipwrecks also support ecological resources by providing underwater habitats that can be colonized by diverse organisms ranging from microbes to megafauna. In the present article, we review the emerging ecological subdiscipline of shipwreck ecology, which aims to understand ecological functions and processes that occur on shipwrecks. We synthesize how shipwrecks create habitat for biota across multiple trophic levels and then describe how fundamental ecological functions and processes, including succession, zonation, connectivity, energy flow, disturbance, and habitat degradation, manifest on shipwrecks. We highlight future directions in shipwreck ecology that are ripe for exploration, placing a particular emphasis on how shipwrecks may serve as experimental networks to address long-standing ecological questions.</p

    Five Year Follow Up of Extremely Low Gestational Age Infants after Timely or Delayed Administration of Routine Vaccinations

    Get PDF
    This study is aimed at detecting the rate of untimely immunization in a large cohort of extremely low gestational age neonates (ELGANs) of the German Neonatal Network (GNN) and at addressing risk factors for delayed vaccination and associated long-term consequences. We performed an observational study of the GNN between 1st January 2010 and 31st December 2019. The immunization status for the hexavalent and pneumococcal immunization was evaluated in n = 8401 preterm infants <29 weeks of gestation. Univariate analysis and logistic/linear regression models were used to identify risk factors for vaccination delay and outcomes at a 5-year follow-up. In our cohort n = 824 (9.8%) ELGANs did not receive a timely first immunization with the hexavalent and pneumococcal vaccine. Risk factors for delayed vaccination were SGA status (18.1% vs. 13.5%; OR 1.3; 95% CI: 1.1–1.7), impaired growth and surrogates for complicated clinical courses (i.e., need for inotropes, necrotizing enterocolitis). At 5 years of age, timely immunized children had a lower risk of bronchitis (episodes within last year: 27.3% vs. 37.7%; OR 0.60, 95% CI: 0.42–0.86) but spirometry measures were unaffected. In conclusion, a significant proportion of ELGANs are untimely immunized, specifically those with increased vulnerability, even though they might particularly benefit from the immune-promoting effects of a timely vaccination

    Recruit abundance on a long-term experiment (1999-2017) in the LTER observatory HAUSGARTEN

    No full text
    These data represent the results of a long-term colonization experiment at the Long-Term Ecological Research observatory HAUSGARTEN. Recruitment panels were constructed from plastic and brick and deployed attached to a metal frame in 1999 at the station HG-IV (Arctic Ocean, 79 N, 04 E, 2500 m depth). The experiment was recovered in 2017. Following recovery, all invertebrates and foraminiferans on the panels were counted using a dissecting microscope on board R/V Polarstern and then saved in 95% ethanol. Species were identified by reference to published literature and taxonomic experts. Species richness was low compared to surrounding hard-bottom communities, indicating that Arctic benthic communities may take decades to develop

    Megabenthic standing stocks and organic carbon demand in a warming Arctic

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mazurkiewicz, M., Meyer-Kaiser, K., Sweetman, A. K., Renaud, P. E., & Wlodarska-Kowalczuk, M. Megabenthic standing stocks and organic carbon demand in a warming Arctic. Progress in Oceanography, 196, (2021): 102616, https://doi.org/10.1016/j.pocean.2021.102616.Benthic megafauna (organisms large enough to be visible on seabed photographs) are regarded as important for carbon cycling in benthic habitats. They are a food source for many predators like fish and marine mammals and may stimulate carbon mineralization in sediment by bioturbation. However, few studies address these basic characteristics of megabenthos quantitatively. This study quantifies the spatial variability in standing stock (biomass) and functioning (secondary production, respiration and carbon demand) of benthic megafauna in fjords and on the continental shelf of Svalbard. Organisms were measured from sea bottom images to assess their biomass using length-weight relationships and volumetric methods, then respiration and production were estimated with empirical artificial neural network models. Significantly higher standing stock, secondary production, respiration, and carbon demand were found in fjords categorized as ‘cold’ (as defined by water temperature, prevailing water masses and ice-cover) than in the ‘warm’ ones. Cold fjords were dominated by Echinodermata, while in warm fjords Crustacea prevailed. All megafaunal community parameters were negatively correlated with bottom temperature. It was not possible to assess specific direct impacts of temperature, and indirect effects may be more relevant to our findings. These include temperature-driven changes in primary production, ice cover and ice-algae production or predation pressure from carnivores expanding their ranges northward. The progression of climate warming may affect megafaunal communities by reducing their biomass, production, and carbon demand and have profound effects on ecosystem functioning.Financing was provided by the University Centre in Svalbard and Akvaplan-niva (to PER), by the National Science Centre grant number UMO-2016/23/B/NZ8/02410 (AbeFun), and statutory funds of the Institute of Oceanology, Polish Academy of Sciences (to MWK)

    Larval dispersal and recruitment of benthic invertebrates in the Arctic Ocean

    No full text
    Larval dispersal is a fundamental process responsible for colonization and connectivity of benthic invertebrate populations. It is difficult to study larval dispersal in polar environments because weather and climate conditions restrict sample collection to certain seasons. In this study, we leveraged oceanographic moorings as long-term scientific platforms for collecting larvae and recruits of benthic invertebrate species in the Fram Strait and along the continental slope north of Svalbard in 2017–2021. Larval traps and fouling panels were deployed at various depths on 15 moorings at 8 locations, and additional specimens of biofouling were obtained opportunistically from moored instruments. Our results showed a significant difference in species composition between samples collected in Atlantic Water in the West Spitsbergen Current (WSC) and samples collected in Arctic Water near the seafloor and in the East Greenland Current (EGC) in the western part of the Fram Strait. There was also a stark difference between Atlantic Water species in the Fram Strait and on the north Svalbard slope. Most specimens collected in the WSC belonged to species with long-duration planktotrophic larvae, such as the ubiquitous bivalve Hiatella arctica, the bryozoan Alcyonidium mamillatum, and two nudibranchs. Samplers exposed primarily to Arctic water at their given depth and location were dominated by hydrozoans. We observed medusae budding off of the hydroids Stegopoma plicatile and Rhizoragium roseum. Our study demonstrates that the WSC is an important vector for larval dispersal into the central Arctic Ocean. Integration of biological samplers on oceanographic moorings holds great promise for monitoring efforts as climate change progresses, especially in environments where research is challenging and seasonally limited, such as the Arctic. 1. Introduction For benthic invertebrates, especially those with sessile adult stages (e.g., sponges, anemones), larval dispersal is the primary mechanism of dispersal to new habitats (Pechenik, 1999). The patterns and mechanisms of larval dispersal are difficult to study in the Arctic Ocean, where weather and climate conditions restrict sample collection to summer months. As a result, larval dispersal and the subsequent processes of settlement and recruitment in benthic invertebrates are poorly understood in the Arctic Ocean, despite their importance. Oceanographic moorings provide excellent platforms for studying larval dispersal, recruitment, and growth of organisms (Chava et al., 2021; Schiaparelli and Aliani, 2019). Instruments and floats on a mooring are deployed in the water column by design, so th

    Palau's warmest reefs harbor thermally tolerant corals that thrive across different habitats

    No full text
    Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau's Rock Islands experience consistently higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau's cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf. lobata colonies to identify thermally tolerant genotypes, map their distribution, and investigate potential growth trade-offs. We identified four genetic lineages of P. cf. lobata. On Palau's outer reefs, a thermally sensitive lineage dominates. The Rock Islands harbor two lineages with enhanced thermal tolerance; one of which shows no consistent growth trade-off and also occurs on several outer reefs. This suggests that the Rock Islands provide naturally tolerant larvae to neighboring areas. Finding and protecting such sources of thermally-tolerant corals is key to reef survival under 21st century climate change.Ministry of Education (MOE)National Research Foundation (NRF)Published versionFunding sources: To A.L.C.: National Science Foundation (OCE2049567), The Seija Family, The Arthur Vining Davis Foundation, the Atlantic Charter Donor Advised Fund, and the Dalio Foundation, Inc. To J.R.T.: The Singapore Ministry of Education and National Research Foundation through an RCE award to Singapore Centre for Environmental Life Sciences Engineering (SCELSE), and the MIT Sea Grant Office. To H.E.R.: Woods Hole Oceanographic Institution Coastal Ocean Institute Grant and Ocean Venture Fund, National Defense Science and Engineering Graduate Fellowship Program, the Martin Family Fellowship for Sustainability, and the American Association of University Women Dissertation Fellowship. To M.D.F.: The WHOI Postdoctoral Fellowship. To K.S.M.-K. and H.E.R.: Paul M. Angell Family Foundation Grant. To I.B.B.: OCE-1537959

    Shipwreck ecology: understanding the function and processes from microbes to megafauna

    Get PDF
    AWAITING PUBLICATIONAn estimated three million shipwrecks exist worldwide and are recognized as cultural resources and foci of archaeological investigations. Shipwrecks also support ecological resources by providing underwater habitats that can be colonized by diverse organisms ranging from microbes to megafauna. Here, we review the emerging ecological subdiscipline of shipwreck ecology, which aims to understand ecological functions and processes that occur on shipwrecks. We synthesize how shipwrecks create habitat for biota across multiple trophic levels and then describe how fundamental ecological functions and processes, including succession, zonation, connectivity, energy flow, disturbance, and habitat degradation, manifest on shipwrecks. We highlight future directions in shipwreck ecology that are ripe for exploration, placing a particular emphasis on how shipwrecks may serve as experimental networks to address long-standing ecological questions

    Five year follow up of extremely low gestational age infants after timely or delayed administration of routine vaccinations

    No full text
    This study is aimed at detecting the rate of untimely immunization in a large cohort of extremely low gestational age neonates (ELGANs) of the German Neonatal Network (GNN) and at addressing risk factors for delayed vaccination and associated long-term consequences. We performed an observational study of the GNN between 1st January 2010 and 31st December 2019. The immunization status for the hexavalent and pneumococcal immunization was evaluated in n = 8401 preterm infants <29 weeks of gestation. Univariate analysis and logistic/linear regression models were used to identify risk factors for vaccination delay and outcomes at a 5-year follow-up. In our cohort n = 824 (9.8%) ELGANs did not receive a timely first immunization with the hexavalent and pneumococcal vaccine. Risk factors for delayed vaccination were SGA status (18.1% vs. 13.5%; OR 1.3; 95% CI: 1.1–1.7), impaired growth and surrogates for complicated clinical courses (i.e., need for inotropes, necrotizing enterocolitis). At 5 years of age, timely immunized children had a lower risk of bronchitis (episodes within last year: 27.3% vs. 37.7%; OR 0.60, 95% CI: 0.42–0.86) but spirometry measures were unaffected. In conclusion, a significant proportion of ELGANs are untimely immunized, specifically those with increased vulnerability, even though they might particularly benefit from the immune-promoting effects of a timely vaccination
    corecore