27 research outputs found

    Characterization of Contaminants from a Sanitized Milk Processing Plant

    Get PDF
    Milk processing lines offer a wide variety of microenvironments where a diversity of microorganisms can proliferate. We sampled crevices and junctions where, due to deficient reach by typical sanitizing procedures, bacteria can survive and establish biofilms. The sampling sites were the holding cell, cold storage tank, pasteurizer and storage tank - transfer pump junction. The culturable bacteria that were isolated after the sanitation procedure were predominantly Pseudomonas spp., Serratia spp, Staphylococcus sciuri and Stenotrophomonas maltophilia. We assayed several phenotypic characteristics such as the ability to secrete enzymes and siderophores, as well as the capacity of the strains to form biofilms that might contribute to their survival in a mixed species environment. The Pseudomonas spp. isolates were found to either produce proteases or lecithinases at high levels. Interestingly, protease production showed an inverse correlation with siderophore production. Furthermore, all of the Serratia spp. isolates were strong biofilm formers and spoilage enzymes producers. The organisms identified were not mere contaminants, but also producers of proteins with the potential to lower the quality and shelf-life of milk. In addition, we found that a considerable number of the Serratia and Pseudomonas spp. isolated from the pasteurizer were capable of secreting compounds with antimicrobial properties

    The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

    Get PDF
    Trost E, Ott L, Schneider J, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11(1): 728

    The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    Get PDF
    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Forschungsprojekt: Recycling von Plattenbauten

    No full text
    SIGLEAvailable from TIB Hannover: F02B1034 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekArbeitsgemeinschaft Industrieller Forschungsvereinigungen 'Otto von Guericke' e.V. (AIF), Koeln (Germany)DEGerman

    Das 100.000,- DM Modul-Haus Arbeitsbericht. Abschlussbericht

    No full text
    A low-cost modular home was to be designed and constructed for a family of four. The technology applied in this project used to be restricted to industrial buildings or buildings for temporary use (containers, huts on building sites, or emergency homes). Experience in the USA, Japan and Australia has shown, however, that the construction principle can be applied to single-family homes as well.Ziel des Forschungsprojektes ist es, ein konstenguenstiges Verfahren zum Bau von modularen Einfamilienhaeusern zu entwickeln. Gesucht wird das '100.000,- DM Haus', das fuer die vierkoepfige Familie einen bewohnbaren Lebensraum schafft. Vorfertigung beim Bauen wird im Einfamilienhaus-Sektor bisher nur fuer einzelne Bauteil-Gruppen wie Decken oder Waende genutzt. Ein Grossteil der Fertigung und des Zusammenfuegens geschieht bei den meisten Systemen immer noch auf der Baustelle. Das Bauverfahren des Modulbaus mit vorgefertigten Raumzellen, die zu 95% kostenguenstig in der Fabrik gefertigt werden, wird zur Zeit fast ausschliesslich fuer industrielle Bauten oder fuer temporaere Nutzungen wie Container, Baubuden oder auch Notunterkuenfte angewendet. Erfahrungen in den USA, Japan oder Australien zeigen jedoch, dass diese Fertigungsprinzipien auch fuer das 'laengerlebige Konsumprodukt Einfamilienhaus' anwendbar sind. (orig.)SIGLEAvailable from TIB Hannover: F03B733 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung und Forschung, Berlin (Germany); Arbeitsgemeinschaft Industrieller Forschungsvereinigungen 'Otto von Guericke' e.V. (AIF), Koeln (Germany)DEGerman

    Molecular and regulatory properties of a public good shape the evolution of cooperation

    Get PDF
    Public goods cooperation abounds in nature, occurring in organisms ranging from bacteria to humans. Although previous research focused on the behavioral and ecological conditions favoring cooperation, the question of whether the molecular and regulatory properties of the public good itself can influence selection for cooperation has received little attention. Using a metapopulation model, we show that extended molecular durability of a public good—allowing multiple reuse across generations—greatly reduces selection for cheating if (and only if) the production of the public good is facultatively regulated. To test the apparent synergy between public goods durability and facultative regulation, we examined the production of iron-scavenging pyoverdin molecules by the bacterium Pseudomonas aeruginosa, a cooperative behavior that is facultatively regulated in response to iron availability. We show that pyoverdin is a very durable public good and that extended durability significantly enhances fitness. Consistent with our model, we found that nonsiderophore-producing mutants (cheats) had a relative fitness advantage over siderophore producers (cooperators) when pyoverdin durability was low but not when durability was high. This was because cooperators facultatively reduced their investment in pyoverdin production when enough pyoverdin had accumulated in the media—a cost-saving strategy that minimized the ability of cheats to invade. These findings show how molecular properties of cooperative acts can shape the costs and benefits of cooperation

    Attachment but Not Penetration of Bovine Herpesvirus 1 Is Necessary to Induce Apoptosis in Target Cells

    Full text link
    Bovine herpesvirus 1 (BHV-1) induces apoptotic cell death in bovine peripheral blood mononuclear cells and B-lymphoma cells. Using a BHV-1 glycoprotein H null mutant, we have demonstrated that although penetration of BHV-1 is not required, attachment of BHV-1 viral particles is essential for the induction of apoptosis
    corecore